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Abstract 
 
Our increased dependence on computer models leads to the natural question – how do we 
know whether a computer model is valid? Models have traditionally been tested against 
experimental measurements through simple comparisons such as x-y plots, scatter plots, 
or two-dimensional contour plots. We are then faced with two questions: When is the 
agreement between experimental measurement and model prediction good enough, and 
how should we quantify this agreement? 
 
Here we present the use of statistical methods to develop metrics for this agreement. We 
start with the simplest case in shock wave physics for which one can use the validation 
results directly to develop probability-based metrics. As an example, common statistical 
methods are used to test the validity of CTH hydrocode predictions of shock wave speed 
using experimental data for aluminum on aluminum impact. We then move to more 
complex multivariate validation scenarios for which the model predictive uncertainty is 
characterized using propagation of uncertainty analysis. Methodology for the multivariate 
case is developed and examples are presented using CTH predictions of shock wave 
speed. 
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1.0 Introduction 
 
 

The use of numerical models for the simulation of physical systems has greatly influenced 
our approach to engineering and science. These models are used to design commercial 
and military equipment, to design scientific experiments and to analyze the results, and to 
perform conceptual studies. The increased ease of use, the greater ability to model 
complex phenomena with higher fidelity, and the decreasing cost of modern computers 
have accelerated the use of numerical models. Such models are reducing the engineering 
design cycle time and cost, and are increasing the reliability of the resulting products.  
 
The increased dependence on computer models leads to the natural question – are these 
models valid (for example, in the sense that Roache, 1998 uses the word)?  Traditionally, 
modelers have tested their models against experimental data whenever possible. This 
testing often takes the form of comparisons of predictions to measurements through 
simple x-y plots, scatter plots, or two-dimensional contour plots. Such testing is, on the 
face of it, insufficient for our need. After plotting the results, we are still faced with two 
questions: When is the agreement between experimental measurements and model 
predictions good enough? How does one accurately and meaningfully measure this 
agreement?  
 
In this report we use concepts from statistics to develop metrics for the agreement 
between prediction and experimental results relative to the intrinsic uncertainty in the 
validation exercise. (In this report, the word “metric” is used in the informal sense of 
“measure,” not in the mathematical sense. The development of a model for uncertainty 
can be one of the more difficult aspects of the definition of such measures, and much of 
the present report is devoted to this topic.  
 
Several approaches to the development of these metrics are presented. In this report we 
will call these metrics validation metrics. In the first approach, the model for the 
uncertainty is estimated from the prediction differences directly (differences between the 
model predictions and the experimental observations). This approach is commonly used 
in statistical inference and relies on basic assumptions about the statistical characteristics 
of the prediction differences.  
 
In the second approach, we utilize a propagation of uncertainty analysis to develop the 
statistical model for the uncertainty. This approach is appropriate when it is easier to 
statistically characterize the uncertainty in the model input parameters and perform a 
propagation of uncertainty analysis, than it is to estimate the statistical characteristics of 
the differences between prediction and observation directly. This second approach is used 
when one cannot perform a sufficient number of validation experiments to characterize 
the statistics of the prediction differences from the results directly, or when the prediction 
differences have a complex correlation structure due to the characteristics of the 
predictive model. 
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Finally, we present a variation of the second approach where the validation metric is 
modified to reflect the desired application of the model. This approach recognizes that the 
model validation experiments are not necessarily exact or even near replicates of the 
desired application of the model. As such, a model of the application is used to modify 
the validation metric so that the validation data is weighted in a fashion appropriate for 
the application.  
 
We demonstrate these three approaches using data and a numerical model from shock 
wave physics.  The Eulerian shock wave physics code CTH (McGlaun, et al. 1990, Bell et 
al., 1998, Hertel and Kerley, 1998) is used to model the impact of an aluminum plate with 
an equal sized, but initially stationary, aluminum plate in the km/s range. As a result of 
the high impact speeds, a shock wave forms and propagates through the aluminum at 
supersonic speeds. Model predictions for the shock wave speed are tested against 
experimental measurements using the three statistically based approaches introduced 
above. 
 
This report is a continuation of a previous report by Hills and Trucano (1999) which 
provided a tutorial on the propagation of uncertainty analysis and model validation, and 
presented a literature review of model validation methodology. The role of uncertainty 
analysis is currently viewed as important to high quality validation by the DOE 
Accelerated Strategic Computing Initiative (ASCI) verification and validation (V&V) 
program (Lee, 1998; Ang, et al., 1999). However, this report is one of the first pieces of 
work to go beyond programmatic generalities and perform specific technical work that is 
aligned with the program objectives in this focus area. 
 
We will discuss the experimental data that underlie this paper in greater detail below. 
However, it is worth stressing at this point that these data are quite unusual in terms of 
quantity, quality, and simplicity of their experimental functional relationship. In 
particular, the form of the data subjected to analysis here are substantially linear. We do 
not expect the experimental data underlying any future work that targets code validation 
in the context of uncertainty analysis to be better than what we analyze here. We 
encourage the attentive reader of this report to maintain a perspective that focuses on our 
methodology, rather than on the particular niceties of our data. We believe that our 
methodology is quite general. It certainly does not require either the quantity or linearity 
of the validation data discussed in this report. 
 
In Section 2 we make brief comments on statistical model validation. Section 3 is a 
discussion of the shock wave physics background necessary to understand the validation 
data used in this report. We aim this discussion at readers who may be unfamiliar with the 
peculiarities of shock wave data. Based on our intended goal of illustrating methodology 
and discussions we have had during drafting the final form of this report, we believe that 
it is critical for our purpose to clearly define the nature and context of our data. Sections 4 
and 5 present the two primary approaches to model validation with uncertainty mentioned 
above (model uncertainty estimated from data – Section 4; model uncertainty estimated 
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from uncertainty propagation – Section 5). We conclude the paper with a discussion of 
the key points in this report and recommendations for future work in Section 6. 
 
Unless otherwise clear from the context, the word “model” in this report always means 
the code CTH and all of the input associated with its use, including material model 
specification, grid generation and material geometric fills, and specific choices for 
computational control parameters associated with given calculations. Examples of such 
input specifications are given in the Appendices. 
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2.0 Statistical Model Validation: Background 
 

2.1 Introduction 
 
When performing model validation, it is critical that we determine whether differences 
between model predictions and experimental observations from a model validation 
exercise are significant.  To address this problem, we must first ask, “what metrics should 
we use to measure theses differences?” and “how large should the values of these metrics 
be in order to declare a model invalid for this particular set of data?”  Here we use 
statistical methods to define these metrics – called validation metrics – and their critical 
threshold values. Background on this statistical approach to model validation is presented 
in the previous report by Hills and Trucano (1999).  

2.2 Scientific Validation 
  
The statistical approach to model validation is based on refining the above issue. The 
question we must really ask is – are the differences between the predictions and the 
experimental observations significant relative to the uncertainty in the validation 
exercise? Possible sources of uncertainty in this exercise are 1) uncertainty in the values 
of the parameters use in the predictive model, 2) uncertainty in the initial and/or boundary 
conditions for the model of the validation experiment, 3) uncertainty in the model 
predictions due to truncation error in the numerical model, 4) uncertainty in the times 
and/or spatial locations of the measurements, and 5) uncertainty in the values of the 
measurements themselves. In principle, all of these sources must be accounted for when 
we attempt to determine whether experimental – computational differences are 
significant. 
 
Our logic is thus one of falsification. If the differences between prediction and 
experimental observation are significant relative to the total uncertainty, we conclude that 
the model is not valid in a fundamental scientific sense. We reject the scientific validity 
of the model. In contrast, if the differences are not significant relative to the uncertainty, 
then we have no reason to reject the model. Note that if the validation exercise has 
significant uncertainty, we are less likely to reject an invalid model.  In contrast, if the 
validation exercise is very precisely defined and controlled such that there is very little 
uncertainty, then we will have a greater chance of rejecting an invalid model.  We will 
also have a greater chance of rejecting a model in some sense as scientifically valid, even 
though it may provide useful but approximate predictions. In such cases, we should relax 
our definition of a “valid” model and introduce an engineering definition and approach to 
validation, which we now discuss. 
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2.3 Engineering Validation 
 
The engineering approach is based on asking the question - are the differences between 
the predictions and the experimental observations significant relative to the uncertainty in 
the validation exercise plus some acceptable error? In contrast to scientific validation, this 
form of validation requires that the user of the model define what level of error is 
acceptable. Alternatively, we can use statistical methods to evaluate error bounds on the 
predictions which may be more useful since this approach does not require the user to 
define what level of error is acceptable a-priori. Of course, the decision that the error bars 
are “small enough” still requires a decision about acceptable levels of error. 
 

2.4 Probabilistic Methods 
 
A common feature of both scientific and engineering validation, as defined above, is they 
both require a probabilistic model for the uncertainty in order to evaluate whether the 
differences between model prediction and experimental observation are significant 
relative to this uncertainty. There are two basic approaches that can be used to determine 
the probabilistic models. One is to use prediction differences (differences between the 
predictions and the experimental measurements) directly to develop the model for the 
uncertainty. The second is to use knowledge of the uncertainty of the predictive model’s 
input parameters, and perform a propagation of uncertainty analysis to estimate the 
corresponding uncertainty in the model predictions, and add this uncertainty to that of the 
measurements. A tutorial on this second approach is presented in Hills and Trucano 
(1999). We will demonstrate both of these approaches in Chapters 4 and 5 using the 
validation test problem introduced in Chapter 3. 
 

2.4.1 Direct Use of Prediction Differences 
 
The usual approach in statistics is to develop a model for the uncertainty using the 
observed scatter of the data. This approach is exploratory in the sense that one must 
hypothesize a probability model for the uncertainty, use the data to estimate the relevant 
statistical parameters that characterize the probability model, then test this parameterized 
probability model against the data. If the resulting statistical model shows behavior 
consistent with the data, then it can be used as a basis to statistically compare model 
predictions to experimental observations.  
 
This approach works well if the scatter in the prediction differences (model predictions 
minus the experimental observations) have a structure well modeled by common 
probability distributions, if the errors are independent, and if we have sufficient 
experimental data to resolve the statistical parameters for the probability models. If the 
errors are not independent, then we may still be able to use this approach if one of the 
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standard correlation models can be shown to apply or if we can remove this correlation by 
other means.  
 
In general, we do not expect errors to be uncorrelated for the kind of validation data that 
we will be dealing with in the ASCI V&V program. This approach is difficult to apply 
when the prediction differences have a complex correlation structure. As an example, 
consider the comparison of temperature predictions in a heat-conducting solid against 
measurement of temperature taken at various times and locations throughout the solid. 
Typically, if a prediction difference is positive at some measurement location and time, it 
will likely be positive at an adjacent measurement location and time. The prediction 
differences are thus correlated with the correlation structure closely associated with the 
physics of heat conduction.  For cases such as this, standard correlation models are not 
appropriate and we must consider a different approach.  
 

2.4.2 Propagation of Uncertainty Analysis  
 
The second approach is to model the uncertainty in the prediction errors using the 
predictive model, knowledge about the uncertainty structure of the model input 
parameters, and knowledge about the uncertainty structure of the measurements. This 
approach works well for cases for which it is easier to characterize the uncertainty in the 
model input parameters and in the measurements than it is to characterize the uncertainty 
directly from the population of prediction differences. For example, it may be easier to 
generate sufficient data to evaluate the uncertainty structure of the thermal conductivity 
using multiple samples in a simple, divided-bar apparatus, than it is to run multiple 
validation experiments for which measurements of temperature are taken in multiple 
samples of a complex three-dimensional object.  It is also generally easier to determine or 
control the correlation structure of the experimental measurements themselves since the 
measurement system can often be designed to provide independent measurements or 
measurements with an easy-to-estimate correlation structure. 
 
Given the model for the uncertainty in the model input parameters, we can use 
propagation of uncertainty analysis to evaluate the corresponding uncertainty in the 
model’s predictions of the measurements. Given this model for the prediction uncertainty, 
and the uncertainty for the experimental measurements, we can then evaluate the 
corresponding uncertainty for the prediction differences.  
 
Examples of the propagation of uncertainty approach are provided in Hills and Trucano 
(1999) for simple physical models. Here we will demonstrate both the direct approach 
and the propagation of uncertainty approach for a shock physics model for the high-speed 
impact of aluminum on aluminum.  This model has been selected to be one of the 
simplest illustrations of the comparison between experiment and calculation for shock 
wave physics that we can think of. The philosophy behind this choice is further discussed 
in Section 3.0. 
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3.0 High Speed Impact of Aluminum on Aluminum 
 
 

3.1 The Shock Hugoniot: An Introduction 
 
The canonical problem that we are concerned with in this report is the symmetric impact 
of an aluminum plate upon an aluminum plate under conditions that guarantee that the 
resulting material response is in uniaxial strain. This is a specific example of a more 
general case in which two different materials undergo the same type of impact. The 
resultant state of uniaxial strain is the most important part of the experiment, not the 
assumption that the materials are identical (which creates a significant simplification of 
the overall event as we will see). Uniaxial strain states induced by such an impact mean 
that the shock wave generated in the impact is a square-wave (at least in the ideal) and 
also guarantees that the resulting shock wave propagation can be analyzed as a one-
dimensional Cartesian geometry wave propagation problem. It is the purpose of this 
section to demonstrate the implications of these facts for understanding the key data that 
might be accumulated from experiments of this type.  
 
Figure 3.1 illustrates schematically the specific example of this type of impact that we 
care about in this paper. To fully understand this particular experiment we intend to 
provide a summary of the experimental techniques and the data that result. Without this 
understanding, our focus on the specific data discussed later in this paper will likely be 
misunderstood by the reader. The meaning of the symbols in this figure will also be 
explained below. 

3.1.1 The Shock Hugoniot 
 
The plate impact problem that we are concerned with has been extensively modeled and 
studied experimentally for many years. The main reason is that this problem and 
variations of it are an important experimental method for determining data characterizing 
the shock Hugoniot (Zel’Dovich and Raizer, 1967) for various materials.  
The Hugoniot can be characterized in a variety of ways, as discussed below. But the 
experimental measurements that simultaneously determine shock velocity and particle 
(material) velocity on the Hugoniot have special significance in the characterization of the 
response of materials to high pressure shock waves. The experimental determination of 
the relationship of shock velocity and particle velocity is also very repeatable and is 
consistent from experiment to experiment and from experimental technique to 
experimental technique. The response of aluminum (and other materials) to such an 
impact can be simulated by computational shock wave physics codes. These codes rely 
upon appropriate equation of state models for their accurate performance. These models 
are almost always developed using empirical knowledge about the shock Hugoniot of the 
material. The functional relationship between shock velocity and particle velocity is 
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particularly useful for this application. Therefore, it is of importance to understand what 
is being measured and why it is important, both experimentally and theoretically. 
 
The Hugoniot of a material is the locus of thermodynamic final states that is generated by 
steady state shock waves of varying strength (Zel’Dovich and Raizer, 1967; Davison and 
Graham, 1979; Graham, 1993). The key state variables of interest in the present 
discussion, as well as fundamental to the Hugoniot, are material density (ρ), material 
pressure (P), material internal energy (e), and material (or “particle”) velocity (Up). The 
ideal steady state shock wave is a step wave. It is common to parameterize the strength of 
this shock wave by its speed (Us ) in the frame of reference of a stationary observer. Such 
a wave, and the associated state variables are shown in Figure 3.2. We designate the 
initial state of the material state variables by the index “0,” the final state in the wake of 
the shock wave with the index “1,” as shown in Figure 3.2. 
 
Given the initial state and the shock velocity, the final state is uniquely determined by 
algebraic relationships called the Rankine-Hugoniot conditions. It is in this sense that 
the speed of the shock wave “parameterizes” the locus of Hugoniot states. The most 
general form of these equations is: 
 
 
 
 

 
 

Figure 3.1: The symmetric impact of two aluminum plates. 
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The Rankine-Hugoniot (R-H) relations, which are derived from the basic conservation 
laws of mass, momentum, and energy, represent three equations relating nine different 
quantities, of which four define the reference conditions. It is possible to reduce the 
number of free quantities in (3.1). For example, if the equation of state of the material is 
given as ),( ePP ρ= , then the pressures can be eliminated from the equations in terms of 
the densities and internal energies. In a particularly simple case, suppose that 00 =P and 

00 =e , a good approximation to the standard reference conditions for many solids 
undergoing shock loading. Further, suppose that the material is initially motionless, so 
that 00 =PU . Then the R-H relations (3.1) reduce to: 
 
 
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.2:  The Idealized Shock Wave Pressure Profile: P0, P1 – pressure in front 

and behind shock, US – shock velocity, UP1 – particle velocity behind 
shock. 
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We now have three equations relating five quantities. Then, for example, if we can 
provide a relationship between particle velocity and shock velocity, for example in the 
form )(1

SP UfU = , then (3.2) defines the final state of the material behind the shock 
wave in terms of the initial density and the shock speed. For a fixed material, only shock 
speed can vary. It is in this sense that we mentioned above that the Hugoniot states (the 
final states) can be parameterized by a single parameter, the shock speed in this case. The 
parameterization could also have been in terms of the final particle velocity, density, 
pressure, or internal energy. 
 
We can also simplify the R-H conditions directly in terms of the conceptual experiment 
of Figure 3.1. There, the impact of a material upon an identical material is depicted, 
which generates a shock wave in both materials. The Hugoniot state of this material is 
governed by the R-H relations as described above. Now, however, because of the very 
special form of this so-called symmetric impact, we know the final particle velocity. If the 
impact velocity is IU , then conservation of momentum can be applied to show that 

21
IP UU = . Since the target plate in this case is assumed to be at reference conditions 

and stationary, equations (3.2) still apply with this specialization of the final state particle 
velocity: 
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What is particularly attractive about (3.3) is that it implies that experimentally, all that 
needs to be measured is the impact velocity and the shock velocity. But, of course, (3.3) is 
only true for symmetric impacts, which have certain limitations. 
 
A relationship between final particle velocity and shock velocity is thus of particular 
interest from the theoretical view. The R-H relations demonstrate that it is not necessary 
to perform thermodynamic measurements in shock wave experiments to characterize 
density, pressure and internal energy on the Hugoniot of a material. Only the quantities 
specifically associated with shock wave motion – particle velocity and shock velocity –  
need to be measured. These are the quantities that are most directly accessible in classic 
shock wave experiments. Many of these experiments directly realize the ideal of Figure 
3.1. We briefly describe these experiments below.  
 
Temperature on the Hugoniot has not been included in our list of thermodynamic 
quantities and this is a particularly troublesome quantity to determine experimentally. 
Discussion of this issue is well beyond the scope of this report. The interested reader can 
find a useful introduction to the problems in Zel’Dovich and Raizer (1967). Why our 
picture of the response of matter to high pressure shock waves is not complete without 
considerations of temperature is part of the subject matter of high pressure equations of 
state. A modern introduction to this topic from the point of view of shock wave physics is 
Avrorin, et al., (1993). 

3.1.2 Measurement of the Shock Hugoniot 
 
Experimental techniques for measuring states on the shock Hugoniot are necessarily 
demand precise time resolution capabilities (Nicholas and Rajendran, 1990). There are a 
variety of methods for measuring shock velocity and particle velocity, only one of which 
will be of direct interest to us in this report. The simplest, and in principle the most 
accurate, means of measuring such data uses smooth bore gun technology. In this 
particular technology, the experiment is almost exactly replicated in its major principles 
by the idealized experiment suggested in Figure 3.1. In other words, some type of high 
velocity gun is used to accelerate an impactor under conditions that control the state of 
the impactor and the geometry of the impact. The impactor is then allowed to strike a 
static material, called the sample, in a normal impact, just as depicted in Figure 3.1.  
 
Brief descriptions of gun techonology for performing shock wave experiments are given 
in Cable (1970) and Asay (1981). Multi-stage light-gas guns achieve the highest impact 
velocities to measure the Hugoniot for materials. Using high impedance impactors (see 
below) shock wave pressures of up to approximately a few megabars in aluminum are 
achievable by means of the controlled impacts these guns provide. Far greater shock wave 
pressures are achievable by other means, such as specially designed explosive systems 
(Al’tschuler, et al., 1996), high-power laser systems (Trainor, et al., 1979) and the use of 
underground nuclear explosions (Mitchell, et al., 1991; Trunin, et al., 1994). 
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The two-stage light-gas gun, invented in 1948, is the most common approach for 
achieving the highest controlled shock wave pressures in the laboratory. The operation of 
this instrument is briefly described in Cable (1970). As shown in Figure 3.3, the first 
“stage” of the gun is typically an explosively driven piston which compresses a volume of 
light gas, typically hydrogen for its very high sound speed. Upon compression the large 
pressures developed by the light gas burst a carefully manufactured diaphragm in the 
second “stage” of the gun, releasing the gas. At this point the gas becomes a working 
fluid, and serves to accelerate the impactor assembly (projectile) to velocities that can be 
greater than nine km/s depending upon the details of the design of the gun. Such 
projectiles are necessarily mass-limited, but are fully adequate in size to allow the 
acquisition of high accuracy quantitative shock wave data. 
 
In real gas gun experiments, the projectile and sample assemblies are considerably more 
complex than we have suggested in the simple schematic of Figure 3.1. For one thing, it 
may be obvious to the reader that some craft is required simply to design projectiles that 
will withstand the enormous accelerations provided by the second stage of a two-stage 
gun and remain viable for generating accurate (uniaxial strain) shock wave data. Because 
the shock wave research community is also interested in understanding the response of 
materials to compressive loading waves which are more complex than the simple square 
wave that we have used to motivate the above analysis, projectiles (and sample 
configurations) are also designed to achieve these more complex goals. A discussion of 
these issues can be found in Asay, et el., (1985). 
 
The simplest type of projectile that can be used to generate the Hugoniot data that we 
discuss in this paper is sketched in Figure 3.4. A plastic body, typically plexiglass or 
lexan, designed specifically to launch properly under the acceleration of the compressed 
hydrogen gas, is fronted with the working impact material, typically a metal. For the 
symmetric aluminum impacts of this paper, for example, the working impact material 
would be aluminum. Typically the diameter of this projectile is roughly 10 to 25 mm. The 
overall length of the simple projectile in Figure 3.4 in this case would be roughly four 
times that amount, and the thickness of the facing material would be on the order of one 
millimeter. 
 
 

 
Figure 3.3:  Schematic of a two-stage light-gas gun, the modern instrument 

of choice for shock wave studies. 
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Figure 3.4:  Schematic of a realistic projectile used for shock wave 

studies on smooth bore guns. 
 
 
The impactor and sample specifics may deviate significantly from the simple schematic 
depicted in Figure 3.4, however. For example, it is typically the case to allow an impactor 
to be a different material than the sample. The reason for this is the strength of the shock 
is controlled by the shock impedance (product of sound speed and density) of the 
impactor as well as the sample. For example, aluminum-on-aluminum impacts for a given 
impact velocity will generate lower pressure (hence lower speed) shock waves than an 
iron impactor on an aluminum sample.  
 
For the experimental data we discuss in this report, symmetric aluminum impacts could 
have been used to generate the data without being limited by maximum achievable 
velocities on two-stage gas guns. However, the data were in actuality gathered in 
explosive experiments in which the impactor need not have been aluminum, but a higher 
impedance material instead (Rice, et al., 1957; McQueen, et al., 1970; and Marsh, 1980). 
A conceptual view of the type of explosive system that could be used to generate these 
data is shown in Figure 3.5. Clearly such experiments need to be designed carefully to 
maintain integrity of the impactor and control of the impact conditions. 
 
The schematic in Figure 3.4 suggests some of the constraints in performing even a simple 
shock wave experiment. For example, data acquisition should not take place over a time 
scale that is longer than the time for waves to propagate from the outer boundary of the 
projectile to the radial location of a measurement gauge. Also, upon impact the shock 
wave that is generated, which moves backwards into the projectile body, will eventually 
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pass through the boundary between the metal impactor and the plastic projectile body. 
This will generate a rarefaction wave, which propagates toward the impact region. The 
acquisition time should not be greater than the time it takes for this rarefaction to 
propagate into the measurement region. 
 
Therefore, potential sources of uncertainty – hence deviation of actual experimental data 
from computational results predicated on a one-dimensional analysis – in the plate impact 
experiment include: 
 
• Edge effects, which would cause the experiment to deviate from uniaxial strain. For 

example, if the geometry of the impactor/sample configuration had too small a radius, 
then rarefactions propagating from the outer radius would enter the region where 
shock velocity was measured, corrupting the data. 

• Impact tilt, although this is a very small problem in modern gun operations. Steps are 
usually take to measure impact tilt in situ. Data for which tilt is too great (a few 
milliradians) would be rejected. The presence of any tilt, of course, is in principle a 
fully three-dimensional impact problem. The argument that slight amounts of tilt do 
not corrupt the data is based mainly on empirical experience acquired over many 
years. 

• Impact surface smoothness, which is essential for producing a steady state planar 
shock. If the surfaces are sufficiently rough, the generated shock wave will be 
temporarily unsteady and vary as a function of position across the surface area of the 
impact region, thus corrupting data acquisition. 

• Structured (non-steady) shock waves resulting from more complex projectile designs 
(as discussed in Asay, et al., 1985). As we have stressed, the “perfect” wave for the 
present discussion is a step wave. Depending on the sample, and on the specific 
construction of the impactor, as well as the impact velocity, many deviations from a 
step wave may result. For example, if the impact velocity is sufficiently small, the 
loading shock wave will exhibit the two-wave structure characteristic of elastic-
plastic materials. 

 
We do not directly incorporate an analysis of these effects in this report, but the reader is 
advised to be aware of the fact that even gun driven plate impact experiments can be 
considerably more complex than discussed here. 
 
We make one final comment on the matter of instrumentation for shock wave physics 
experiments. McQueen, et al., (1970) is particularly relevant to the type of experimental 
diagnostics that were utilized on the original explosive experiments that determined the 
shock wave data discussed in this report. That instrumentation was characteristic of the 
1950’s. The modern era is characterized by the evolution of highly accurate fast time-
resolved instrumentation. Insight into the nature of these diagnostics can be found in 
Duvall and Graham (1977), Davison and Graham (1979), Asay (1981), Chhabildas 
(1987), and Graham (1993). 
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3.2 One Dimensional Impact of Aluminum on Aluminum: Experimental Data 
 
The aluminum of specific interest in this report is 2024 aluminum (un-sintered), which is 
an alloy of aluminum with the following elemental composition (by atomic weight); 
aluminum (93.4%), copper (4.5%), magnesium (1.5%), manganese (0.6%). Our purpose 
is to compare a computational construction of the Hugoniot for this material with that 
reported experimentally in Marsh (1980). Our approach to the calculation is fully defined 
in Figure 3.1, capturing the substance of the actual experiment as we described above. 
Our computations will treat each experimental US  - UP point as having been generated by 
an appropriate symmetric impact of 2024 aluminum on 2024 aluminum. As discussed in 
Section 3.1.1, this simplified “experiment” (and such an experiment could actually be 
performed with a gun) is defined by an impact velocity UI  that is twice the reported 
particle velocity for the specific data point given in Marsh’s compendium.  
 
The experimental data we are concerned with for 2024 aluminum are reported in Table 
3.1 A particle velocity of 278 m/s is the smallest reported in Table 3.1. The corresponding 
impact velocity of 556 m/s is required for the symmetric impact that should reproduce 
this data point. Similarly, 4.041 km/s is the highest reported value of particle velocity, 
and an impact velocity of 8.082 km/s is required to reproduce this point. (This value is at 
the upper limit of performance for a two-stage light-gas gun, illustrating why higher 
impedance impact materials are desirable for generating such data.) 
 
The R-H relations (3.2) can be used to determine that the lowest impact velocity in the 
data we analyze produces a shock wave having a pressure of approximately 44 kbars, 
which is a factor of more than fourteen times the yield stress of 2024 aluminum. In this 
case, therefore, we accept without further discussion that the aluminum can be accurately 
modeled as a fluid rather than as an elastic solid. The equation of state of the aluminum 
thus becomes the only important constitutive description in the problem. At all other data 
points in Table 3.1 the pressure is higher, so this modeling assumption is made for the 
entire range of data that we discuss. (A future study, of course, should be performed to 
also demonstrate the truth of this assumption.) 
 
As suggested by equations (3.2), if both final particle velocity and shock velocity are 
measured in an impact experiment then the Hugoniot state of the sample is defined. A 
significant amount of work has been performed where the impactor is a so-called shock 
standard (McQueen, et al, 1970). For such a material, independent experimental studies 
have carefully defined that material’s Hugoniot. When such a standard material is used as 
an impactor, only the shock velocity needs to be measured in an experiment with a 
differing sample material. This is because the pressure can be inferred from the known 
Hugoniot of the impactor, and the continuity of Hugoniot pressure across the impact 
interface. This has historically been an experimental approach of great significance, 
especially for ultrahigh pressure shock wave measurements. For instance, this technique 
is dominant in the ultra-high pressure explosive experiments reported in Al’tshuler 
(1996). 
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Figure 3.5: Explosive-metal geometry feasible for performing shock Hugoniot 

measurements. 
 
For symmetric impacts, careful measurement of the impact velocity and shock velocity 
through embedded diagnostics or rear-surface shock breakout timing diagnostics provide 
a US  - UP pair for that experiment. For explosive systems, such as that presented in 
Figure 3.5, even if the impact were symmetric it is not as simple to measure impact 
velocity as for gun experiments. In general, though, standards are used in explosive 
experiments, further complicating the measurement process. Then, either the pressure 
must be directly measured or the particle velocity behind the shock wave must be directly 
measured. Embedded gauges can measure pressure up to specified limits (Graham, 1993). 
But for very high pressures particle velocities turn out to be easier to measure directly 
using a technique that we describe below. 
 
High accuracy time-resolved diagnostics, such as laser velocity interferometry, were not 
available during the period of time when most of the classic shock wave data summarized 
in Marsh (1980) were collected. The following approach for gathering data requires no 
assumptions about the nature of the impactor. The time of arrival of the shock wave at 
various points within or on the back of the sample in the explosive configuration depicted 
in Figure 3.5 was monitored through pin-contactors or optical techniques (Rice, et al, 
1958; McQueen, et al, 1970), thus providing a measurement of US. These data also 
confirm the planarity of the shock wave, a necessary condition for validating the uniaxial 
strain condition. To measure UP the location of the rear surface of the sample is 
monitored (also through pin-contactors or optical techniques) to measure its free surface 
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velocity upon breakout of the shock wave. The free surface velocity is the sum of the 
particle velocity due to the shock wave, UP, and the particle velocity due to the resulting 
reflected rarefaction wave created by the intersection of the shock wave with the free 
boundary of the sample.  Since each of these waves has approximately the same particle 
velocity (see Rice, et. al., 1958; McQueen, 1970), the free surface velocity is 
approximately twice the particle velocity UP, thus providing an estimate of the particle 
velocity. Marsh (1980) describes the approach that is used to correct for small 
inaccuracies in this method of particle velocity determination.  
 
By repeating the experiments using explosives designed to deliver different impact 
velocities, hence different amplitude shock waves, the (UP, US) points (hence density, 
pressure and internal energy via the R-H conditions) on the Hugoniot curve are measured. 
While these data are not valid off the Hugoniot curve, they can be and are used to 
calibrate equation of state models for states near this curve (Rice, et al., 1958). We will 
say more about this below. 
 
Table 3.1 presents (UP, Us) data for 2024 aluminum taken from several references in the 
research literature as tabulated in Marsh (1980). As mentioned above, the lowest pressure 
data point corresponds to an approximate pressure of 44 kbars on the Hugoniot, while the 
highest pressure point corresponds to an approximate pressure of 427 kbars. This pressure 
is well below the Hugoniot melt transition for aluminum (approximately a Hugoniot 
pressure of 1.3 Mbars). Thus, the melting transition does not enter any of our 
considerations of the comparison of computational and experimental data in this report. A 
plot of these data is given in Figure 3.6. Note that there is a strong linear relation between 
the shock speed and the particle speed. We will stress at this point, and again below, that 
this linearity is an empirically measured relationship. Also note that there appears to be 
little scatter in the data, illustrating the repeatability of the experiments from different 
sources. It is important to note that the error bars for individual experiments for these data 
are likely to be smaller that the symbols used in Figure 3.6, while differences between 
individual experiments are larger. The experimental variability appears to increase at 
higher impact velocities, suggesting either instrumentation response issues or 
experimental control issues are becoming more important in data acquisition.  
 
Because of their quality and quantity, these data will be used to demonstrate model 
validation methodology for a one-dimensional shock wave model. These data are natural 
candidates for testing statistical validation methodologies that are aimed at shock wave 
physics codes. But the reader should realize that the quantity and quality of shock 
Hugoniot data rapidly decrease in the ultrahigh pressure regime. For example, in very 
carefully designed experiments utilizing an underground nuclear explosion, Mitchell et al 
(1991) achieved (UP, Us) data for aluminum with error bars of approximately 1% for (UP, 
Us) ~ (17.5 km/s, 28 km/s). These data correspond to a Hugoniot pressure of 13.3 Mbars, 
a Hugoniot density of about 2.7 times normal density. The reported error is larger than 
would be reported for experiments with current gun technology and diagnostics. And the 
experiment is virtually unique – no repeat of the data point is likely for the 
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Table 3.1: Hugoniot Data for Aluminum 2024: All speeds are in m/s 
 

Up Us Up Us Up Us Up Us Up Us 
278 5811 859 6445 1318 7062 2206 8231 3287 9642 
279 5782 859 6470 1352 7092 2306 8396 3293 9758 
440 6021 860 6446 1362 7143 2327 8358 3297 9721 
472 6054 862 6472 1362 7139 2335 8421 3347 9775 
497 6025 863 6486 1383 7225 2371 8436 3361 9751 
502 6098 864 6418 1426 7268 2446 8570 3376 9803 
503 5996 865 6518 1432 7228 2449 8529 3376 9746 
507 6055 871 6561 1437 7156 2467 8699 3381 9670 
509 5947 873 6522 1445 7268 2477 8618 3387 9609 
509 5953 888 6541 1446 7211 2595 8829 3395 9821 
608 6125 891 6589 1461 7269 2604 8762 3400 9916 
609 6103 892 6442 1465 7295 2604 8748 3406 9872 
626 6262 896 6589 1467 7305 2605 8744 3419 9866 
627 6228 897 6579 1479 7266 2608 8664 3463 9654 
650 6226 901 6402 1481 7268 2641 8848 3472 9697 
671 6164 910 6530 1498 7342 2645 8797 3481 9727 
677 6277 910 6534 1539 7366 2650 8803 3487 9732 
722 6367 953 6616 1557 7462 2664 8724 3500 9870 
727 6323 953 6617 1558 7444 2671 8764 3508 9861 
728 6310 966 6659 1568 7413 2687 8853 3508 9880 
768 6348 975 6607 1574 7479 2709 8792 3538 9880 
778 6388 979 6560 1574 7426 2710 8816 3563 10117 
786 6312 988 6507 1578 7326 2735 8909 3618 10040 
790 6304 990 6490 1588 7416 2738 8916 3629 10238 
792 6314 1081 6824 1605 7407 2817 9144 3658 9876 
792 6365 1107 6779 1617 7508 2878 8971 3680 10113 
793 6308 1110 6844 1722 7678 2911 9070 3717 10190 
798 6418 1116 6843 1728 7596 2935 9231 3718 10388 
798 6342 1119 6846 1728 7612 2974 9236 3736 10138 
799 6353 1121 6840 1728 7615 2987 9401 3745 10162 
800 6393 1124 6818 1742 7690 3030 9177 3748 10370 
800 6459 1128 6756 1744 7616 3031 9180 3772 10458 
802 6397 1130 6823 1770 7659 3035 9198 3777 10409 
802 6355 1134 6826 1779 7758 3081 9317 3778 10431 
802 6393 1136 6831 1812 7775 3086 9317 3786 10341 
803 6432 1141 6795 1851 7690 3108 9228 3930 10552 
803 6432 1144 6783 1858 7850 3148 9446 3966 10513 
805 6394 1146 6861 1939 7773 3148 9369 3967 10384 
809 6422 1157 6893 1948 7973 3181 9596 3983 10611 
809 6422 1157 6752 1957 8054 3187 9549 3988 10572 
818 6366 1159 6915 1959 8015 3217 9365 3991 10542 
831 6436 1206 6857 2095 8114 3225 9666 4001 10572 
833 6483 1220 6981 2096 8076 3238 9762 4026 10631 
839 6419 1220 7014 2130 8127 3251 9409 4041 10572 
850 6415 1260 6955 2154 8149 3260 9477   
854 6443 1263 6938 2154 8150 3269 9426   
858 6488 1277 6943 2156 8332 3274 9617   
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foreseeable future. Vladimirov, et al., (1984) report aluminum Hugoniot data that 
correspond to Hugoniot pressures of approximately 4000 Mbars and densities five times 
greater than normal. These data were again gathered utilizing an underground nuclear 
explosion and are unique. Also, the error bars are significantly larger than in the work of 
Mitchell and his colleagues. Finally, we point out that the techniques described by 
Al’tshuler (1996) achieve reported Hugoniot pressures of tens of Mbars, yet the accuracy 
of these data has been a source of controversy in the United States shock wave 
community for decades. 
 

3.3 One Dimensional Impact of Aluminum on Aluminum: The Model 
 
We use the Sandia Eulerian shock wave physics code CTH, which is described in 
McGlaun, et al. (1989) and Bell et al. (1998), to simulate the one-dimensional impact of 
2024 aluminum on 2024 aluminum illustrated in Figure 3.7. Two equation-of-state 
models (EOS) are applied in this report (Hertel and Kerley, 1998). The first is a SESAME 
model for pure aluminum, SESAME 3700, which is a tabular EOS data. The second is 
the Mie-Grüneisen analytic model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.6: Hugoniot Data for Aluminum 2024: UP – particle velocity, US – shock 
velocity (from Marsh, 1980) 

 
 

Up, m/s

U
s,

m
/s

0 1000 2000 3000 4000 50005000

6000

7000

8000

9000

10000

11000



    

 32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: One Dimensional CTH Model: Impact occurs at time = 0. 
 
The linearity of the locus of UP – US states on the Hugoniot is widely observed in most 
materials, including the aluminum alloy of concern to us here (Marsh, 1980), but it is not 
universal. For example, cesium has a slight quadratic trend in this locus that is apparent at 
moderate pressures (less than several megabars). Other materials that show deviation 
from linearity at moderate pressures are compounds such as nylon and silastic, as well as 
water. “Linearity” of the UP – US relationship in the Hugoniot state is not a fundamental 
consequence of simple material behavior. Rather, it is one particularly simple 
manifestation of complex, non-linear material behavior. It is important to keep this in 
mind during our discussion of the implications of comparing computational predictions of 
the linearity of this locus with experimental observations. 
 
It is also important for the reader to understand how the linearity of the relationship 
between UP and US may be used in the modeling we discuss. CTH calculations utilize a 
general equation of state (EOS) to describe the response of aluminum to the impact and 
subsequent propagation of a shock wave. It is hopefully clear at this point that the 
linearity of the particle velocity and shock velocity on the Hugoniot has its origin in more 
than simply the equation of state of a material. The dynamics has entered into this 
relationship because the Hugoniot implicitly is an artifact of the conservation laws. Thus, 
under any circumstances, CTH calculations that “predict” linearity of the particle velocity 
– shock velocity on the Hugoniot are expressing more than the simple encoding of this 
behavior in the constitutive model used by the calculations. 
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In addition, the equations of state which are commonly used in shock wave physics codes 
– and certainly in CTH – are called semi-empirical. This means that experimental data 
are used to calibrate the theoretical model for higher accuracy. In particular, below we 
will illustrate the use of the observed linearity of the Hugoniot UP – US data in calibrating 
the two models we use in our studies: the Mie-Grüneisen EOS and the SESAME table. 
Because the EOS’s are calibrated using the observed UP – US data does not mean that we 
have therefore built that linearity into our calculations. If that were true there would be no 
point in performing this study. In fact, linearity of the computational UP – US data is, if it 
is observed, fully a consequence of the material description and the numerical solution of 
the conservation laws. This is why asking the question of how a calculation may compare 
with these data is relevant to begin with. It is indeed true that if we expect to accurately 
calculate more general shock wave problems we must certainly reproduce the Hugoniot 
data with relatively good accuracy, or we will have little hope of performing reasonably 
accurate calculations in more difficult circumstances. This, of course, is why we refer to 
the present effort as being a validation study. 
 
The SESAME EOS that we utilize is 3700, which is a tabular form of an equation of state 
for pure aluminum developed by Kerley (1987). (An alternative SESAME EOS for 
aluminum has been described by Holian, 1986.) One important component in an equation 
of state is an expression for the cold curve (0 Kelvin isotherm) of the material. Kerley’s 
tool for developing an EOS, PANDA (Kerley, 1988), allows a theoretical approximation 
to the cold curve to be developed from knowledge of the empirical particle velocity – 
shock velocity Hugoniot relationship (including quadratic dependencies). As documented 
(Kerley, 1987), however, an analytic approximation for the cold curve was employed 
instead that was in agreement with zero temperature band theory calculations for 
aluminum. Thus, for the SESAME model we apply in the calculation in this paper, no 
direct use of the empirical linear Hugoniot data was made at all in its contruction. 
 
The other model we use is the Mie-Grüneisen EOS (see McQueen, et al (1970) for a brief 
introduction to this model). The Mie-Grüneisen EOS is by no stretch of the imagination 
as general as the SESAME EOS tables described above. In its most general form, the 
EOS expresses pressure as a function of density and internal energy in the following 
form: 
 

( ) ( )refref )( eePP −Γ=− ρρρ    (3.4) 
 

)(ρΓ is called the Grüneisen parameter. Equation (3.4) is basically a Taylor 
approximation to the equation of state of a material when the anticipated thermodynamic 
state is “not too far” from a reference condition (expressed by the subscript “ref” in (3.4)). 
For compressive shock problems, it has been observed for many years that (3.4) produces 
computationally useful, somewhat accurate (depending on circumstances) EOS results by 
allowing the reference state to be the Hugoniot of a material. Since Hugoniots are 
typically known empirically, such a model necessarily rests on that empirical foundation. 
The question of whether the model can successfully reproduce that empirical foundation 
in computational studies is a focus of the current report. 
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Assuming linearity of the Hugoniot UP – US we write 
 

PS sUCU += 0     (3.5) 
 
Then the appropriate reference states for use in (3.4) are written as HP  and HE  and are 
given by (from the R-H conditions) 
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We intend to perform one assessment of the accuracy of this model in the present 
circumstances by comparing its predictions with the Hugoniot data in Table 3.1. We 
certainly expect the results to be reasonably accurate, since the data do not represent 
extreme deviations from the reference state we use in the construction of the model. But it 
is apparent that this model will not accurately reproduce a “linear” Hugoniot for all 
densities. This is because there is a singularity in the prediction of the Hugoniot pressure 
in (3.6) when ( )10 −= ssρρ . For aluminum, this represents a compression of 
approximately four. (Recall from Section 3 that Vladimirov and his colleagues claim to 
have achieved states on the Hugoniot where compression by a factor of five was 
achieved!) The  Mie-Grüneisen EOS would fail in attempts to reproduce observed 
linearity of the Hugoniot in this region for aluminum, even though it might appear that we 
have somehow “built in” that linearity. 
 
CTH does not provide shock wave speed directly because it is not a primary code 
variable. It must be constructed from calculation data. Thus, we monitor the predicted 
velocity of a particle initially located 4 cm from the impact face in the stationary 
aluminum plate to evaluate the time of arrival of the shock. We define this time as the 
time at which the particle velocity jumps to half the anticipated particle speed UP. The 
corresponding shock speed is the distance traveled (4 cm) divided by the time of arrival. 
The algorithm used to do this is discussed in Appendix A. 
 
A copy of a CTH input file is listed in Appendix B for a typical impact velocity. This file 
includes all of the necessary information for independent setup and execution of the 
calculations reported in this report. A script was written to modify this input file n times 
(once for each impact velocity modeled), run the appropriate modules of CTH, and 
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append the results to a results file. After the n runs are complete, a post processor is used 
to evaluate the shock speed, US, for each of the n runs to provide US as a function of UP. 
Details of this process are discussed in Appendix A. The results of these shock wave 
speed predictions, using the SESAME EOS model for the 232 values of UP listed in 
Table 3.1, are plotted in Figures 3.8 and 3.9 for two different grid resolutions. The 
experimental data are also shown. Note that there are very slight differences in the 
predictions using these two grid resolutions (0.1 and 0.05 cm) and these differences are 
very small compared to the scatter in the experimental data. Because of this, we will use 
the lower-resolution predictions for the analysis presented in the remainder of this report. 
We are not claiming that this observation represents a grid convergence study. Under 
other circumstances such a study would be performed independently of the work we 
report here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8:  Prediction vs. Experiment - Low Resolution Results: 100 cells across 

each aluminum plate, SESAME AL2024 EOS model. (The 
computational data is presented in Table D1.) 

 
 
We conclude this section by stressing one more point. The issue of full theoretical 
understanding of the basis for the apparent linearity in UP – US on the Hugoniot has been 
somewhat thorny. We will not attempt to summarize work on this problem here. The UP – 
US  relationship on the Hugoniot is well known to deviate from linearity in the presence 
of phase transitions (Duvall and Graham, 1977). However, we have already suggested 
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that for the range of aluminum data we are considering phase transitions are not 
important. But even in the absence of phase transitions, a fundamental explanation for the 
observed linear UP – US Hugoniot relationship is incomplete. Most recently, in fact, 
Johnson (1996, 1997) has suggested that the theoretical UP – US Hugoniot relationship is 
in fact bilinear. We will stress one more time – linearity in the UP – US Hugoniot data is 
not trivial, either experimentally or theoretically. Neither is such linearity directly built 
into shock wave physics codes as some kind of constraint. Therefore, the work that 
follows is not mainly about simply fitting a linear code model to a linear data collection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9:  Prediction vs. Experiment - High Resolution Results: 200 cells across 

each aluminum plate, SESAME AL2024 EOS model. 
 
 

3.4 Two-Dimensional Impact of Aluminum on Aluminum: The Application 
 
A common feature of model validation is that the desired application of the model may 
not be exactly represented by the validation experiments. For example, we may intend to 
use a predictive model to compute the arrival time of a shock wave in a two-dimensional 
geometry. However, our model validation experiments may only measure shock wave 
speed as a function of particle velocity for a one-dimensional geometry. Alternatively, we 
may have data to test our model over a large range of model parameters. But our 
application may only require that the model be valid over a small range of model 
parameters. In Chapter 5, we develop methodology to define validation metrics based on 
specific applications. To demonstrate this methodology, we must first choose a particular 

Up, m/s

U
s,

m
/s

0 1000 2000 3000 4000 50005000

6000

7000

8000

9000

10000

11000

Us exper
Us pred



    

 37

application illustration. Here we consider our application to be the impact of a small 2024 
aluminum cylindrical slug on a larger diameter 2024 aluminum plate at 6 km/s as shown 
in Figure 3.10. This application is two-dimensional since we can assume radial symmetry. 
The impact will result in a shock moving into the larger diameter plate with particle 
velocities that decrease with distance into this plate.  Edge effects and decay of the 
propagating shock wave cause this reduction. Our validation experimental data clearly 
excluded these effects. Hence, this is indeed an interesting contrast and extension with 
respect to the validation experiments we use. Figures 3.11 through 3.14 show the 
progression of the material deformation and the progression of the shock wave through 
the large target plate as predicted by CTH. (Note that these figures have horizontal and 
vertical axes with differing lengths.) The CTH input file for this calculation is listed in 
Appendix C. Note that a shock wave propagates through the large plate at speeds 
considerably greater than the penetration speed of the smaller slug. Also note that the 
particle speeds calculated near the back of the target plate are considerably less than the 
projectile impact speed due to the geometric effect of the diverging shock, which is non-
steady in this application. We will take the time at which the back surface particle speed 
reaches 0.25 km/s as our decision variable to focus validation for this application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10: Impact of Small Aluminum Slug on a Thick Aluminum Plate 
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3.5 Summary 
 
In the following chapters, we take several approaches to develop measures of model 
validity based on the model predictions and the experiment observations shown in Figure 
3.8. One approach utilizes the data in Figure 3.8 directly to develop a statistical model for 
uncertainty. The other two approaches use propagation of uncertainty analysis to develop 
this statistical model. In addition, the third approach uses the application defined in 
Section 3.4 to further refine our definition of the validation metric. This last approach has 
the advantage that the validation metric is specifically designed for an anticipated 
application. We believe that application dependence will be a paradigm for the 
construction of quantitative validation metrics. The disadvantage is that each new 
application requires a redefinition of the validation metric. 
 
 

 
 
Figure 3.11: CTH Predictions at Time=0: Left half of plot illustrates material 

locations; Right half of plot represents the magnitude of the particle 
velocities. 
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Figure 3.12: CTH Predictions at Time=1.0 µµµµ    sec: Left half of plot illustrates 

material locations; Right half of plot represents the magnitude of the 
particle velocities. 
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Figure 3.13: CTH Predictions at Time=4.0 µµµµ    sec: Left half of plot illustrates 

material locations; Right half of plot represents the magnitude of the 
particle velocities. 
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Figure 3.14: CTH Predictions at Time=7.0 µµµµ    sec: Left half of plot illustrates 

material locations; Right half of plot represents the magnitude of the 
particle velocities. 
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4.0 Model Validation using Standard Statistical Methods 
 
 

4.1 Introduction 
 
Figure 4.1 shows the CTH model predictions for shock wave velocity as a function of 
particle speed (i.e., half the impact velocity) for the SESAME EOS model, and the 
corresponding experimental measurements (this figure is a repeat of Figure 3.6). Clearly, 
the model over-predicts the experimental observations for larger values of UP. Are the 
differences between model predictions and experimental observations statistically 
significant relative to the uncertainty in the validation exercise?  To answer this question, 
we must first develop a model for the uncertainty in the prediction differences (i.e., 
predicted measurements minus experimental measurements for a given particle velocity). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1:  Prediction vs. Experiment for the Shock Wave Experiments, 

SESAME AL2024 EOS model. 
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We begin the process by noting from Table 3.1 of the previous chapter that we have very 
few repeated measurements of US for each UP.  Because of this, we do not have enough 
data to develop a statistical model for the prediction differences for each UP.  However, 
we may be able to develop such a model using the data for all UP if certain statistical 
assumptions are valid. The usual procedure is to assume that the differences are 
independent and that the structure of the differences for each UP is the same across all UP. 
For example, if the differences are well modeled by a normal distribution, then we 
assume the distribution to have a uniform mean and standard deviation for all values of 
UP and we assume independence of the prediction differences for different values of UP. 
If these assumptions are valid, then we can use the prediction differences at all the UP to 
estimate the corresponding mean and standard deviation for the normal distribution of 
differences for each UP.  
 
Unfortunately, inspection of Figure 4.1 suggests that the assumption of a uniform mean 
and standard deviation across all UP does not appear to be valid since there is a very clear 
drift in the model predictions from the experimental results.  We must either use 
nonparametric methods, which do not require as many assumptions about the probability 
distributions, or we must attempt to remove the drift. We start with a nonparametric 
approach. 
 

4.2 Nonparametric Methods 
 
Nonparametric methods do not require that the underlying probability distributions be 
well characterized. They also do not require that properties of the probability 
distributions, such as a standard deviation, be uniform for different data locations (i.e., for 
different values of UP for our case).  The disadvantage of nonparametric methods is they 
are not as efficient as parametric methods (Miller and Freund, 1985). Parametric methods 
are more likely to accept a bad model as valid because they effectively give a larger 
benefit of doubt to a model before it can be rejected.  
 
Here we will use the sign test (Brownlee, 1965; Miller and Freund, 1985) to test whether 
the median of the prediction differences for all of our data is zero. The sign test is useful 
since we have a natural pairing between the experimental and the prediction data (i.e., one 
predicted value for each experimental value) and since the test does not require that the 
standard deviation be uniform across the data. Note that this test says nothing about the 
ability of the model to predict shock wave speed as a function of particle speed. It only 
tests the median predictive capabilities of the model. However, if a model fails this test, 
then there is generally little chance that it will pass the more difficult tests of predicting 
shock wave speed as a function of particle speed.   
 
We begin by assuming that a valid model is as likely to over predict shock wave speed as 
to under predict shock wave speed, and use the sign test to evaluate whether the data 
supports this assumption. We begin by taking the difference between the predicted shock 
speed and the measured shock speed for each prediction/measurement pair, and count the 
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number of positive and the number of negative results. Prediction/experimental pairs with 
zero differences are discarded. We then use the binomial distribution to evaluate the 
probability of these many positive differences relative to the total number of non-zero 
differences, given that our distribution is symmetric. The associated cumulative 
probabilities for the binomial distribution are tabulated in most statistical textbooks (for 
example, Miller and Freund, 1985). For a large number of data points (n >20), the 
binomial distribution is well approximated by the normal distribution with the appropriate 
transformation. Since we have 232 measurements, we will use this approximation here. 
The appropriate transformed normally distributed test statistic is (Miller and Freund, 
1985) 
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where p0=0.5 for a symmetric distribution, x is the number of positive differences, and n 
is the total number of nonzero differences. The results of the sign test for our data are 
presented in Table 4.1. 
 
 

Table 4.1: Statistics for the Sign Test 
 

   N 
 Us_pred – Us_exper Negative Differences 102  
  Positive Differences 130 
  Ties 0 
  Total number of non-ties 232 
 
 Test Statistic Z = 1.773 
 Significance (two-tailed) = 0.076 
 
 
The probability of obtaining a Z greater than 1.773 is 7.6%. Therefore, the probability that 
an experiment with 232 samples would produce 130 positive differences, assuming that 
we should have as many positive differences and negative differences, is 7.6%. If we 
desire to incorrectly reject a valid model only 5% of the time, then because 7.6% is 
greater than 5%, we do not have sufficient evidence to reject the hypothesis that the 
model over predicts as often as it under predicts. Therefore, this test does not provide 
sufficient evidence to reject the model as valid.  
 
Inspection of Figure 4.1 clearly indicates that the model does tend to over predict at least 
as often as it under predicts. However, the results of Figure 4.1 also indicate that the 
model may not do an adequate job of predicting US as a function of UP. We test this 
hypothesis in the next section.  
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4.3 Functional Dependence of Us on Up 
 
Inspection of Figure 4.1 indicates that the model predictions and the experimental 
observations of shock wave speed appear to be different linear functions of particle 
velocity. One possible method to test the model is to use linear regression to estimate the 
corresponding slope and intercept of both the experimental and the predicted data and 
compare the results. This method is applicable if the functional dependence of the 
measurements and predictions on the independent parameter (UP in this case) are both 
linear. A more general approach is to plot the experimental shock wave speeds against the 
corresponding model predictions of the shock wave speeds as shown in Figure 4.2. This 
does not require separate regression on the model and experimental data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Scatter Plot of Experimental vs. Predicted Shock Wave Speed: 

Dashed line is Us_exper = Us_pred. 
 
 
Data from a model that predicts the experimental data perfectly plotted this way will lie 
on a line with intercept of zero and slope of one. This will be true for both linear and 
nonlinear models. Reckhow et al. (1990) suggests that linear regression be used to fit a 
line to this data and statistical inference be used to evaluate whether this line has an 
intercept of zero and a slope of one. The results of performing such a regression on our 
data are shown in Figure 4.3. Note that the regression line (solid) does not line up with 
the perfect model (dashed) line and the intercept is not zero and the slope is not one. Are 
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these values significantly different from zero and one?  To answer this question, we must 
first develop a probability model for the regression residuals. 
 
The regression residuals (Us_exper as measured – Us_exper as predicted by the 
regression line) are shown in Figure 4.4. Note that the mean of these residuals appear to 
be distributed about zero for all Us_pred. Also note that there does appear to be some 
variation in scatter of the residuals as a function of Us_pred.  However, this variation is 
small relative to the size of the Us_exper (roughly less that 4% of given values of 
Us_exper) and we will assume that these residuals have a uniform standard deviation as a 
function of Us_pred. A histogram of the regression residuals is shown in Figure 4.5. The 
equivalent normal distribution (using the mean and standard deviation as estimated from 
the residuals) is also shown in Figure 4.5 for comparisons. The results of the histogram 
suggest that the residuals are normally distributed. However, we can test this rigorously 
using a Kolmogorov-Smirnov test (Miller and Freund, 1985).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Scatter Plot of Experimental vs. Predictions Shock Wave Speed: 

Dashed line is given by Us_exper = Us_pred; Solid line is the 
regression (Us_exper = 0.950 Us_pred + 360.2). 
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Figure 4.4: Regression Residuals vs. Predictions Shock Wave Speed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: Histogram of the Residuals 
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The Komogorov-Smirnov one-sample test is a nonparametric test to evaluate whether the 
data has the same cumulative distribution as the test distribution (a normal distribution in 
our case). This test is based on the probability of observing the maximum absolute 
difference between the cumulative distribution of the sample and the test distribution. The 
results of this test are shown in Table 4.2. 
 
 
 
Table 4.2:  Statistics for the Kolmogorov-Smirnov Test for a Normally 

Distributed Residuals. 
 

    
 n  232  
 Normal Parameters Mean 0.000 
  Standard Deviation 77.56 
 Most Extreme Differences Absolute 0.060 
  Positive 0.043 
  Negative -0.060 
 
 Kolmogorov-Smirnov Z  0.908 
 Significance (two-tailed)  0.381 
 
 
The probability of obtaining a Z greater than 0.908, given that the distribution is normal, 
is 38.1%. Since this is a very high level of probability (much higher than the usual 5% at 
which the hypothesis would typically be rejected), there is no significant statistical 
evidence that the residuals are not normally distributed. This observation allows us to 
assume a normal distribution of the residuals to evaluate error bounds – confidence 
intervals – on our regression coefficients (i.e., the intercept and slope) for the data in 
Figure 4.3.  
 
The regression coefficients for Us_exper vs. Us_pred, and the associated 95% confidence 
intervals on these coefficients are listed in Table 4.3. The evaluation of these confidence 
intervals for normally distributed residuals are discussed in most text-books on parameter 
estimation or regression (for example, see Beck and Arnold, 1977) and provided by most 
computer statistical packages. 
 
 
Table 4.3:  Regression of the Experimental Shock Wave Velocity as a Function of 

the Predicted Shock Wave Velocity. 
 
   95% Confidence Interval for Coefficients  
  Coefficient Lower Bound Upper Bound 
  
 Intercept 360.2 306.8 413.5 
 Slope 0.950 0.943 0.957 
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Note that a zero intercept and a slope of unity are not within the 95% confidence intervals 
for these quantities. We thus reject the hypothesis that the model is valid scientifically – 
has slope one and intercept zero – based on a non-zero intercept and a non-unity slope. 
 
While this model does not appear to be valid scientifically in these terms, the model can 
still be very useful if we can evaluate confidence intervals on the predictions. To do this, 
we use the regression analysis performed above to generate confidence intervals on a 
prediction of the regression model. These, in turn, can be used to approximate the 
prediction differences in the shock wave speed as a function of particle velocity.  
 
Figure 4.6 shows the 95% prediction bounds as a function of Us_pred, evaluated using 
standard techniques from regression (Beck and Arnold, 1977). These bounds reflect the 
uncertainty in estimating the intercept and slope, and the scatter of the data about the 
regression line. Recall that we assumed that the standard deviation (or variance) of the 
data was uniform for all values of particle speed. Since there does seem to be a bit more 
scatter at high shock speeds, a more accurate approach would be to divide the data into 
zones and evaluate a standard deviation for each. This would require that we use 
weighted residuals during the regression process such as presented in Beck and Arnold 
(1977). We could, of course apply such an approach if circumstances necessitated it. 
 
 
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Prediction Bounds on the Regression of Us_exper vs. Us_pred. Solid 

thin lines are the 95% prediction bounds, solid thick line is the 
regression, dashed line is Us_exper = Us_pred. 

 

Us pred, m/s

U
s

ex
pe

r,
m

/s

5000 7000 9000 110005000

7000

9000

11000

95 % bound 

95 % bound 



    

 51

 
Note that the perfect model, as represented by the dashed line, is within the confidence 
intervals for low values of Us_pred and outside the confidence intervals for high values 
of Us_pred. We can use these intervals to characterize the prediction error in our model. 
For example, the lower bound on the prediction at Us_pred = 11000 m/s is approximately 
10700 m/s. This represents a 3% error difference between experiment and observation. 
We can thus say that we have less than a 5% chance that a Us_exper will lie outside the 
confidence bounds for this range of data. Or we can say that we have less than a 5% 
chance that Us_exper will be different from Us_pred by more than 3% at Us_pred = 
11000 m/s.  
 

4.4 Summary 
 
We have found significant evidence that the CTH model for shock wave speed as a 
function of particle speed (or ½ impact speed) for the particular example studies does not 
provide predictions that are consistent with the experimental observations within the 
uncertainty associated with the validation exercise as we have defined it. Because of this, 
the specific data comparison that we have performed here does not provide supporting 
evidence that this model – CTH hydrodynamics plus SESAME 3700 EOS – is valid 
scientifically. This statement is clearly specific to this particular application and we 
intend no generalization beyond the work reported here. Since there is very little scatter in 
the data, the estimated uncertainty in the validation exercise is very small, and a model 
would have to provide very good predictions to not be rejected using this methodology.  
 
However, the model is still very useful from an engineering point of view. Because of the 
form of the prediction differences, we were able to use linear regression to develop a 
model for these differences. The confidence intervals on this regression can then be used 
as confidence intervals on CTH prediction differences of shock wave speed. We found, 
for example, that the maximum prediction difference at US_pred = 11,000 m/s was less 
than 3% at the 95% confidence level. However, to develop such a model for prediction 
difference, we need sufficient experimental data over the range of data for which the 
model will be applied as the quality of the statistical test depends upon the number of 
samples. But an estimate could still be made using far fewer data. Less data would result 
in larger confidence intervals. In such a case, our statement may be that the maximum 
prediction difference at US_pred = 11,000 m/s was less than 6% at the 95% confidence 
level rather than less than 3%. While less data increases the uncertainty of our inferences, 
these increased uncertainties are characterized by statistical methods and the methods 
presented still apply. 
 
The previous examples illustrate how we could use the population of prediction 
differences to develop models for the uncertainty in the prediction differences. Given 
these models, we can then test whether a model’s predictions are statistically consistent 
with the experimental data. The example we discuss above is about as easy as it will ever 
get in testing complex engineering and scientific models! The experimental data were 
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plentiful and had very little scatter. The example test problem was univariate in the sense 
that we are modeling and measuring a single variable (shock wave speed) as a function of 
a single parameter (particle speed). Finally, because a linear relation existed between the 
predicted and measured shock wave speed, and because there was good evidence that the 
corresponding linear regression residuals were normally distributed with a uniform 
variance and mean, we could use standard statistical methods to estimate the error bounds 
on the regression coefficients. This allowed us to test whether the intercept was zero and 
whether the slope was unity, as would be the case for a valid model. In addition, this 
allowed us to establish a linear regression-based model for the prediction differences as a 
function of CTH’s predictions of shock wave speed. In contrast, if a more complicated 
relation existed between the predicted and measured shock wave speed (i.e., nonlinear), 
then it would be more difficult to analyze and subtract this trend so that the assumption of 
uniform variance and mean of the resulting residuals would be justifiable.  
 
In the next chapter, we look at the more complex case for which the model of uncertainty 
is not determined from the prediction differences directly, but from a propagation of 
uncertainty analysis.  
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5.0 Model Validation using Propagation of Uncertainty 
 
 

5.1 Introduction 
 
One method to estimate the overall uncertainty is to perform the experiment, 
independently, multiple times. For example, we could run the shock wave experiments 
discussed in Chapter 3 multiple times for each particle velocity UP. If each performance 
of the experiment is independent, then the resulting scatter in the differences between 
model prediction and the experimental observation can be used to characterize the 
uncertainty in these prediction differences. We can then evaluate the level of confidence 
that we have that the mean of the prediction differences for each UP is zero.  
 
Alternatively, we can run the experiments once or a few times for each value of the 
independent parameter (each value of UP, for example).  If the statistics of the prediction 
differences are uniform for different values of the independent parameter, or if we can 
develop transformations such that the transformed variables have uniform statistics, then 
we can use the prediction differences directly to develop models for the uncertainty in the 
validation exercise.  
 
Unfortunately, such multiple, independent runs of the model validation experiments are 
not practical for many of the models of interest, or the prediction differences are 
correlated in a fashion that does not lend itself to simple correlation models. We must 
estimate this uncertainty through analysis. In theory, this can be done if we have estimates 
of the probability density functions for those model parameters whose uncertainty 
significantly affects the model predictions. Given these estimates, a propagation of 
uncertainty analysis can be performed, as discussed in Hills and Trucano (1999), to 
characterize the uncertainty in the model predictions. The model can then be tested to 
evaluate whether the model predictions are statistically consistent with the experimental 
observations.  This approach is appropriate if the cost of characterizing the uncertainty in 
the appropriate model parameters, and the cost of  propagating this uncertainty through 
the model, is less than the cost of repeating the validation experiment a sufficient number 
of independent times.  
 
There is an added benefit to using the propagation of uncertainty approach. The 
requirement that we characterize the uncertainty in the model predictions using the model 
forces us to better understand the sources of uncertainty in the model predictions.  
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5.2 Observations/Prediction Space 
 
To help conceptualization of various issues associated with model validation, we use a 
geometric approach here. Consider a model validation exercise for which we take n 
experimental measurements and make the corresponding n model predictions. An n-
dimensional space can be defined for which each of these n quantities is a component in 
the n-tuple of components defining the space (see Figure 5.1). Denote the measurement 
and predicted quantities by θi, i=1,n where n is the total number of measurements.  
 
For the shock wave example presented in previous chapters, we take θi, to be the 232 
shock wave speeds, US, as measured and predicted, for each of the 232 particle speeds 
UP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 

Figure 5.1:  n-Dimensional Validation Space 
 
 
Note that our n validation measurements and our n model predictions will each represent 
a single point in this n-dimensional space. We can now ask the question – is the distance 
between the two points (see Figure 5.1) sufficiently large that we must consider this 
model invalid? We cannot answer this question until we have some metric to measure this 
distance. The statistical approach proposed here is to measure this distance relative to the 
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uncertainty in the validation exercise (i.e., the uncertainty of the predicted differences). 
By using a propagation of uncertainty analysis to characterize the uncertainty in the 
predictions due to parameter uncertainty, and by using a model for the measurement 
uncertainty, we can develop a model for the uncertainty in the prediction differences 
(model predictions minus the experimental observations) for the validation exercise. 
Given this overall model for the validation uncertainty, we can now refine our question to 
ask – is the distance between the two points of Figure 5.1 sufficiently large relative to the 
validation exercise uncertainty that we must consider this model invalid?  
 
To illustrate the concept of measuring distance relative to the uncertainty, consider Figure 
5.2. The uncertainty in the model predictions (as estimated from the propagation of 
uncertainty) and in the experimental measurements (as characterized for that particular 
measurement technique) is represented by probability density function (PDF) clouds. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: Prediction and Measurement Uncertainty in the n-Dimensional 

Validation Space 
 
 
The dark regions are regions of high probability density and the lighter regions 
correspond to lower values for the probability density. The meaning and generation of 
these PDF clouds from uncertainty analysis is discussed in Hills and Trucano (1999).  At 
this point, it is useful to combine the uncertainty of the experimental measurements and 
the model predictions into a single PDF cloud for uncertainty as shown in Figure 5.3 (also 
discussed in Hills and Trucano, 1999). Since our uncertainty in the measurements is, 
itself, just a model, we add this model of uncertainty to our model of prediction 
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uncertainty. The uncertainty of the differences between the predictions and the 
measurements can be developed from the uncertainties of the predictions and the 
uncertainties of the measurements. For measurements that are uncorrelated with the 
predictions, the covariance of the difference between the predictions and the 
measurements is equal to the sum of the covariances of the predictions and the 
measurements. Here we will consider the uncertainty in the difference between the 
measurements and the predictions as the combined or total modeled uncertainty of the 
validation exercise. We can represent this uncertainty as an uncertainty cloud (an n-
dimensional pdf). Here we choose to center this cloud on the maximum lilelihood 
prediction. The actual validation experiment measurements are now shown as a point 
since the experimental uncertainty is now included in the total uncertainty cloud. Note 
that the n-dimensional point corresponding to the experimental measurements is within 
the cloud for this particular example. Also note that we denote this cloud as the prediction 
+ measurement uncertainty rather than prediction – measurement uncertainty. This is to 
reflect that the variances are additive, even though we are taking differences between the 
predictions and the measurements.  
 
We are now in a position to better visualize what it is we are trying to accomplish in 
developing a metric to measure model validity from a correlated set of measurements. We 
wish to establish a region of acceptance that we expect the measurements to lie within.  If 
the validation experiment results in measurements outside the acceptance region, then we 
reject the hypothesis that the model is valid.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Combined Prediction and Measurement Uncertainty. 
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To establish such a region, we must first establish how we are going to measure distance 
from the center of the PDF cloud to the measurement. One possibility, as discussed in 
Hills and Trucano (1999), is to define our measurements in terms of constant PDF 
contours. We can consider all points on a constant PDF contour as equal-distance to the 
center (the point of maximum likelihood, i.e., the point of maximum PDF value). We can 
then define the region of acceptance of a model as that region within the constant PDF 
contour that contains 95% (or some other %) of the probability distribution. An example 
of such a 95% acceptance region is shown in Figure 5.4. Since the measurement point 
does not lie outside of the acceptance region, we accept the model as valid at the 95% 
confidence level. More concisely, if the model (and the model for uncertainty) is valid, 
we would have a 5% chance of observing measurements this far or farther from the 
prediction. We would thus have no statistically significant reason to reject this model at 
the 95% confidence level. In contrast, if the experimental point were just outside the 
acceptance region represented by the dashed line, our chances of observing these 
measurements, assuming a valid model, would be less than 5%. In this case we would 
reject the model at the 95% confidence level. Note that we are using the measurements to 
evaluate whether we have sufficient statistical evidence to reject the model as valid. In 
addition, we are testing at the 95% confidence level so that we have only a 5% chance of 
declaring the model invalid when it is, in-fact, valid. Declaring a model invalid when it is 
valid is known as a Type I error or an error of the first kind (Brownlee, 1965). We are not 
testing whether we have sufficient evidence to declare the model valid, only whether we 
have sufficient evidence to declare the model invalid. 
 
While this approach is conceptually straight forward, it does have a practical issue. The 
evaluation of n-dimensional PDF clouds is very expensive, computationally, if one cannot 
assume simple parameterized forms for the clouds (such as a multi-normal distribution). 
Such can be the case for highly nonlinear problems. However, once the PDF clouds are 
adequately resolved, one can search along the clouds to define the appropriate constant 
PDF surface that contains 95% of the cumulative probability.  The position of this 
measurement relative to this surface can then be used to establish whether there is 
sufficient statistical evidence to reject this model. An example of this approach was 
presented for a spring-damper-mass system in Hills and Trucano (1999).  
 
A second issue is that there are other regions that include 95% of the cumulative 
probability, which are not bounded by constant PDF curves. For symmetric distributions 
such as a multi-normal distribution, the constant PDF approach leads to the acceptance 
region which is the most likely to reject a bad model as inferred from the measurements 
(Brownlee, 1965). This approach minimizes our probability of committing a Type II error 
- failing to reject a bad model. For non-symmetric distributions, the region that contains 
95% cumulative probability and is most likely to reject a bad model will not necessarily 
be bounded by a constant PDF contour.  
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Figure 5.4: 95% Confidence Acceptance Region: Dashed line – outer boundary of 

the acceptance region.  
 
 
 

5.3 Integrated Measures 
 
Another approach to model validation is to base validation metrics on integrated 
measures that are defined in terms of functionals of the predictions and measurements. 
For example, we would generally expect that the mean of the prediction differences (i.e., 
the differences between the prediction and the measurements) to be near zero for a 
scientifically valid model if we were to repeat the validation exercise a sufficient number 
of independent times. Since the mean is a sum of a set of quantities divided by the 
number in that set, we can consider the mean to be an integrated measure. Given a model 
for the distribution of the mean prediction differences, we can perform a test to evaluate 
whether there is significant statistical evidence that the mean of the prediction differences 
is not zero. Likewise, we could define and perform a test to evaluate whether this 
difference is within some acceptable value of zero where the acceptable value is defined 
by the user. 
 
Other examples of integrated measures include the estimation of heat flux over a surface 
from measurements of heat flux at multiple points distributed across the surface; and the 
estimation of the net mass in the system from estimates of density from various points 
located across the system.  
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If these integrated measures can be written as a linear combination of the measurements, 
as they can for the 3 examples just given, then these measures can be looked at as linear 
mappings into subspaces of the validation space as illustrated in Figure 5.5. In this 
example, the measurements and predictions, and their uncertainty, are mapped onto a 1-
dimensional subspace. Depending on the type of integrated measure, the width of the 
probability density functions may be larger, smaller, or the same as the width along the 
same direction of the PDF clouds in the full n-dimensional space. For example, the 
standard deviation (i.e., width) of the mean of a set of n normally distributed random 
variables, which each possess uniform means and standard deviations, is equal to the 
standard deviation of each variable, divided by the square root of n. The width of the 
mapped distribution will thus be narrower than the width of the full n-dimensional cloud 
for n > 1. This would be reflected as narrower PDFs, as mapped on the line, than those 
shown in Figure 5.5.  
 
Once the integrated measure is defined, we can ask whether the distance between the 
clouds is large compared to the width of the clouds. If so, then there is little statistical 
evidence that the integrated measures of the model predictions and the experimental 
observations are the same and we can reject the hypothesis that the model is valid for this 
particular set of measurements. For the example presented in Figure 5.5, there is 
significant overlap of the two PDF’s, as mapped onto our measure. We thus do not have 
significant evidence to reject the hypothesis that the model is valid.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: Integrated Measure as Mapped onto a Subspace of the Validation 

Space.  
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Figure 5.6 shows the mapping onto a different integrated measure.  Note that for this 
case, the mapped measures do not overlap significantly. For this integrated measure, there 
is little evidence that the model predictions and the experimental observations are the 
same. This illustrates a characteristic of integrated measures. They only measure the 
behavior of the model along particular directions in the validation space. To test the 
model in all directions would require a sufficient number of linearly independent 
integrated measures equal to the dimension of the validation space.  
 
An advantage of integrated measures is that it generally does not require as much 
computation to resolve lower dimensional PDF distributions that result from the 
mappings onto lower dimensional spaces. 
 

5.4 Application Specific Measures 
 
As introduced in Section 3.4, a common feature of model validation is that the anticipated 
application of the model may be somewhat different than the model validation 
experiments. For example, we may plan to use a CTH model to predict the arrival time 
and strength of a shock wave. However, our model validation experiments may only 
measure shock wave speed as a function of particle velocity. Alternatively, we may have 
data to test our model over a large range of model parameters. But our application may 
only require that the model be valid over a small range of model parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6: Integrated Measure # 2 as Mapped onto a Subspace of the Validation 

Space.  
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For example, we may be interested in the time of arrival of an impact generated shock 
through an axisymmetric  object with fairly uniform cross-section for low impact 
velocities. In this case, we would be more interested in the performance of the model over 
a range of lower particle velocities. If we can develop a mapping between the important 
variables for the application and those measured for the validation experiments, we could 
use this mapping to weight the validation experiment measurements appropriately for this 
particular application. 
 
A second feature of the actual applications is that the number of degrees of freedom of 
the application decision variables is generally lower than the number of model parameters 
for the application and for the validation experiments. Most applications have go/no-go 
decisions based on a small set of conditions. For example, we may desire to accurately 
predict the time of arrival of a shock wave on the back surface of an object and not the 
details of the propagation of the shock throughout the object.  Or we may only care about 
the total energy delivered to a surface. In each of these cases, the number of quantities 
that we are interested in for the application is one. Thus the degrees-of-freedom for the 
decision variable is only one. 
 
If the degrees-of-freedom of the decision variable is less than that of the number of model 
parameters, and if we can develop a mapping between the validation space and the 
application space, then we can use this mapping to develop integrated measures in the 
validation space. We will illustrate both point validation, and application based validation 
in the following sections. 
 

5.5 Overview of Validation Examples 
 
The propagation of uncertainty approach to model validation is demonstrated in the 
following sections. We use a subset of the experimental UP – US data to serve as 
validation test data and the remaining data to characterize the EOS model parameters and 
their uncertainty. The Mie- Grüneisen quadratic model is used as the EOS for this 
example since its parameters are easily related to the experimental UP – US data. The 
uncertainty in the test data is characterized using standard statistical techniques. The EOS 
parameter uncertainty is propagated through CTH to develop a model for the uncertainty 
in the CTH predictions of shock wave speed as a function of particle speed. Several 
metrics are developed to compare these model predictions to the experimental 
observations. We begin with the characterization of the uncertainty in the validation test 
data and the EOS model parameters. 
 

5.6 Calibration and Measurement Data 
 
Normally, model calibration data and model validation data are independent. In our case, 
we will use the UP – US data from Table 3.1 to calibrate the model and to test it. To 
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provide some independence, we divide the data into two sets, one for calibration and one 
for model testing. The method used to divide the data depends on what one is trying to 
accomplish. For example, if we wish to test the ability of the model to extrapolate to 
higher values of UP, we could use the UP – US data in the low range to calibrate the model 
and use UP – US data in the high range to test the model.  
 
Here we sample calibration data from the entire range of UP – US data. To define the 
subsets of data, we randomly assigned 0’s and 1’s (with equally probability) to each UP – 
US pair. The data pairs assigned 0’s are used for calibration and the data pairs assigned 
1’s are used for model testing. This random selection approach results in the calibration 
data that tends to span the entire range of particle velocities. This results in less 
uncertainty in the calibration constants, which in-turn, results in less uncertainty in the 
model predictions. The decreased model prediction uncertainty increases our ability to 
resolve whether the model is invalid, scientifically. 
 

5.7 Model for Uncertainty in the Validation Measurement Data 
 
Application of the random sampling scheme to our data resulted in 112 UP – US pairs 
being selected for calibration and 120 pairs being selected for model testing.  Figure 5.7 
shows the subset of the experimental UP – US data randomly selected from Table 3.1 for 
model testing. 
 
We can either use prior knowledge of the uncertainty in the experimental technique to 
develop a probability model for the uncertainty in the measurements, or we can attempt to 
develop a probability model from the data directly. Here we use the second approach. 
 
Because we do not have a sufficient number of multiple measurements of shock wave 
speed for each particle velocity, we need to use the data across the range (or sub-ranges) 
of UP to estimate the statistics in a model for uncertainty. This requires that we develop a 
model for the trend in the measurements, and then look at the scatter of the data about this 
trend. Inspection of Figure 5.7 indicates that there appears to be a very strong linear 
relationship between US and UP. Because of this, we can use linear regression to model 
the trend and look at the residuals (scatter) about this regression line to develop a model 
for measurement uncertainty. 
 
The resulting regression line is shown in Figure 5.7. Close inspection of the figure 
indicates that there does not appear to be strong correlation in the scatter of the data about 
the line. Because of this, we can assume that the mean of the residuals is uniform over 
UP. The scatter of the data about the regression line does appear to be somewhat non-
uniform with more scatter at larger values of UP. To account for this non-uniformity, we 
could divide the data into several regions along UP, and estimate the standard deviation 
for each region. However, the differences in scatter are not large and we will assume that 
we can model this scatter with a uniform standard deviation across all UP. This 
assumption should be revisited if we find that our model validation methodology results 
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Figure 5.7: Validation Measurements: 120 measurements randomly sampled 

from the 232 experimental shock wave speed vs. particle speed 
measurements. Solid line – linear regression (Us = 5377 + 1.294 Up). 
(The computational data is presented in Table D2.) 

 
 
 
in the experimental data landing near the acceptance-rejection boundary of our validation 
tests. For example, this would certainly be the case if we had chosen to include some or 
all of the ultrahigh pressure data for aluminum mentioned in Section 3. 
 
Because we are assuming that the standard deviation is uniform across UP, we can use the 
residuals about the regression shown in Figure 5.7 to estimate the standard deviation at 
each UP. This results in 
 
 m/s7.83=measσ  (5.1) 
 
We now apply the Kolmogorov-Smirnov test introduced in Chapter 4 to evaluate the 
normality of the residues. The results of this test are shown in Table 5.1. The probability 
of obtaining the test statistic |Z| greater than or equal to 0.759, given that the distribution 
is normally distributed about a mean of zero is 61%. This is very important, indicating 
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that there is little statistically significant evidence that the errors are not normally 
distributed with a zero mean and a standard deviation of 83.7 m/s. We therefore have no 
reason to reject this model for the uncertainty in the validation measurements. 
 
 
Table 5.1:  Statistics for the Kolmogorov-Smirnov Test for Normally Distributed 

Residuals: Validation Data 
    
 n  120  
 Normal Parameters Mean 0 
  Standard Deviation 83.7 
 Most Extreme Differences  
  Absolute 0.069 
  Positive 0.057 
  Negative -0.069 
 
 Kolmogorov-Smirnov Z  0.759 
 Significance (two-tailed)  0.611 
 

5.8 Model for Uncertainty in the Model Parameters 
 
We use the quadratic UP – US form of the Mie- Grüneisen Equation of State model 
(Hertel and Kerley, 1998): 
 
 2

21 )/( PSPSS UCSUSCU ++=  (5.2) 
 
where CS, S1, and S2 are calibration constants based  on UP – US data. Figure 5.8 shows 
the calibration data randomly selected for calibration from Table 3.1 using the selection 
procedure presented in Section 5.6. Note that in this case, we have 112 data pairs to be 
used for calibration. Inspection of Figure 5.8 indicates that the shock wave speed is linear 
in particle velocity. Because of this, we set the constant on the quadratic term to zero 
 
 02 =S  (5.3) 
 
and use least squares to estimate the intercept, CS, and the slope, S1. The resulting 
regression line is shown in Figure 5.8 with the corresponding regression coefficients and 
their statistics listed in Table. 5.2. Beck and Arnold (1977, p144) present the evaluation 
of the terms in the covariance matrix for linear regression. Note that the estimates of the 
two constants are correlated since the off-diagonal terms in the covariance matrix are 
nonzero. This is generally the case when we must estimate more than one model 
parameter simultaneously (i.e., using least squares). A Kolmogorov-Smirnov test for 
normality of the residuals is summarized in Table 5.3. Since the level of significance of 
the test statistic is larger than 0.05, we cannot reject the hypothesis that the residuals are 
normally distributed at the 5% confidence level. We therefore accept this model for the 
parameter uncertainty. 
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Figure 5.8: Calibration Measurements: 112 measurements randomly sampled 

from the 232 experimental shock wave speed vs. particle speed 
measurements. Solid line – linear regression (US = 5344 + 1.305 UP). 
(The computational data is presented in Table D3.) 

 
 

5.9 Model for Prediction Uncertainty 
 
Now that we possess a model for the uncertainty in the calibration constants (model 
parameters), we can use CTH to propagate this uncertainty through the model to evaluate 
the corresponding uncertainty in the predicted shock wave speed. A tutorial on the use of 
the Monte Carlo and sensitivity analysis methods to perform this propagation is presented 
in Hills and Trucano (1999).  
 
The numerical evaluation of the PDF for the model predictions and the corresponding 
acceptance regions can be very computationally intensive for highly nonlinear problems. 
But the present case is unusual in that the calibration curve used for the EOS model gives 
shock wave speeds that vary linearly with changes in the calibration constants. This will 
significantly reduce the amount of computational work required to estimate the prediction 
uncertainty, but it is not a fundamental restriction on our analysis. Since CTH should 
maintain this relationship while applying the conservation of mass, momentum, and 
energy equations, we expect CTH predictions of shock wave speed to also be linear in the 
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calibration constants for our validation exercise. Because of this linear relation, 
propagation of the uncertainty for normally distributed model parameters (i.e., the 
calibration constants) will result in a multi-normal distribution for the uncertainty in the 
shock speed predictions.  Likewise, the expected value of a model 
prediction will be equal to the model prediction using the expected values of the model 
parameters (see Hills and Trucano, 1999). The expected values of the model parameters 
are given by the least-squares estimates presented in Table 5.2. The resulting CTH 
predictions, using the model parameters given in Table 5.2, are shown with the 
experimental measurements in Figure 5.9. Note that the predictions and the 
measurements appear to agree within the scatter of the data. To evaluate whether this 
agreement is statistically significant, we must first characterize the PDF for the prediction 
errors. 
 
 
Table 5.2:  Calibration Constants 

 
  Coefficient Covariance Matrix 
   CS S1 

 
 CS 5344 166.4 -0.0663 
 S1 1.305 -0.0663 3.50 E-5 
 
 
Table 5.3:  Statistics for the Kolmogorov-Smirnov Test for Normally Distributed 

Residuals: Calibration Data 
    
 n  112  
 Normal Parameters Mean 0 
  Standard Deviation 67.6 
 Most Extreme Differences  
  Absolute 0.104 
  Positive 0.071 
  Negative -0.104 
 
 Kolmogorov-Smirnov Z  1.102 
 Significance (two-tailed)  0.176 
 
 
 
Because the uncertainty in the model predictions is well modeled by a multi-normal 
distribution, we can completely characterize this distribution with the model predictions 
shown in Figure 5.9 and the prediction covariance matrix listed in Table 5.2. Because the 
shock speed should be linear in the model parameters, we can use a sensitivity analysis 
for the evaluation of the prediction covariance matrix (see Hills and Trucano, 1999) 
without any loss in generality. 
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Figure 5.9: Validation Predictions and Experimental Observations: 120 

measurements  
 
 
 
We begin by deriving the sensitivity analysis method for two model parameters. Consider 
the general linear or nonlinear predictive model of the form 
 
 ),,( 21 xfz αα=  (5.4) 
 
where α1 and α2 are model parameters and x is an independent variable (or vector of 
independent variables). We can approximate the change in z from its mean due to 
changes in the model parameters from their means using a truncated Taylor’s series 
expansion: 
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For measurements at n values of x, we can write 
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 dXz ∆=∆  (5.6) 
where 
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and 
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The subscript i indicates that the function f is evaluated at the ith value of x (see Eq. (5.4)). 
The derivatives that appear in Eq. (5.8) are known as sensitivity coefficients and X is the 
sensitivity matrix. The sensitivity derivatives relate small changes in f to small changes in 
the parameters α1 and α2.  
 
We can now estimate the covariance of z using Eq. (5.9) by noting the following: 
 
  TTT XddXzz ∆∆=∆∆  (5.10) 
 
The expected value of Eq. (5.10) is (Beck and Arnold, 1977) 
 
 TTTT XdXXddXzzz )cov()(E)cov()(E ∆=∆∆=∆=∆∆  (5.11)  
 
Equation (5.11) relates the covariance of the model parameters to the covariance of the 
model predictions, assuming that the model predictions are linearly related to the model 
parameters.  
 
The sensitivity matrix, Eq. (5.8), can be approximated using finite differences. Since the 
shock wave speed appears to be linear in the parameters, we will use a simple first-order, 
finite difference to estimate the sensitivity coefficients 
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where n is the number of predicted measurements and ∆α1 and ∆α2 are small increments 
in the parameters. We use 10% increments from the calibrated values given in Table 5.2 
for the present analysis. For our case, n = 120, α1= CS, and α2= S1 and the vector of 
predicted measures corresponds to z (see Eqs. (5.2), (5.4)). We must run CTH 3 times for 
each of the 120 particle velocities to generate the components in the 120 x 2 sensitivity 
matrix X using Eqs. (5.12) and (5.13). The sensitivity matrix, along with the covariance 
matrix for the model parameters given in Table 5.2, are used in Eq. (5.11) to evaluate the 
120 x 120 covariance matrix for the 120 predictions.  
 
The standard deviations of each of the 120 predictions are the square roots of the diagonal 
elements of the resulting prediction covariance matrix. These are shown graphically in 
Figure 5.10.  Note that the general trend is quadratic. This is due to the correlation 
structure between the two model parameters that resulted from the use of least squares to 
estimate these parameters simultaneously. The slight scatter of the points shown in Figure 
5.10 at larger Up is due to the numerical noise associated with modeling shock 
propagation which is further amplified by the evaluation of the sensitivity derivatives 
using finite differences. We would expect to see less scatter for more benign applications 
such as heat conduction in solids, or for smoother shock wave calculations. 
 

5.10 Model of Uncertainty of Validation Exercise 
 
Now that we have a model for the measurement uncertainty and a model for the model 
prediction uncertainty due to the uncertainty in the model parameters, we can combine 
these to develop a model for the uncertainty of the prediction differences (predictions 
minus experimental measurements). 
 
To begin with, we assume that the model calibration data are independent of the 
experimental data. This assumption is justified because we randomly sampled the 
experimental data from a set of 232 measurements of shock wave speed as a function of 
particle speed, and since we saw no evidence of correlation in the scatter of experimental 
shock wave speed as a function of particle speed.  
 
 
Taking the difference between the model predictions and the validation measurements 
leads to the following (see Hills and Trucano, 1999) 
 
 )exper_(E)pred_(E)exper_pred_(E UsUsUsUs −=−  (5.14) 
 
 )exper_(cov)pred_(cov)exper_pred_(cov UsUsUsUs +=−  (5.15) 
 
For our case, the 120 x120 covariance matrix for the model predictions is given by Eq. 
(5.11). The 120 x120 covariance matrix for the measurements is simply a diagonal matrix 
(all off-diagonal terms are zero if we assume the measurements are independent) with the 
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diagonal elements equal to the square of the standard deviation as given by Eq. (5.1). 
Using the results of Table 5.2 and Eqs. (5.1), (5.11) in Eq. (5.15) give 
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The standard deviations for each measurement location (i.e., each UP) are given by the 
square root of the diagonal elements of Eq. (5.16). These are plotted in Figure 5.11.  
Comparing Figures 5.10 and 5.11 and noting the value for the measurement standard 
deviation is 83.7, we see that the uncertainty due to the validation measurements 
dominates the uncertainty in the validation exercise. We also see that the scatter in the 
data caused by numerical noise is not as apparent due to the dominant effect of the 
measurement uncertainty. 
 

 
Figure 5.10: Standard Deviation of Predicted Shock Wave Speeds  
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Figure 5.11: Predicted Standard Deviation for the Prediction Differences 
 
Equations (5.14), (5.16), and (5.17), and knowledge that our error distributions are multi-
normal completely defines the 120 dimensional PDF cloud for the validation exercise. 
Because the uncertainty is dominated by the measurement uncertainty, and because the 
correlation matrix for the measurement uncertainty is diagonal with a uniform variance, 
the resulting 120 dimensional PDF cloud will be nearly spherical in shape. If the model is 
valid, we would expect that the expected value of the prediction differences at each 
particle velocity to be zero.  
 

5.11 The Point Validation Test 
 
We are now ready to define our validation metric for this application of point validation 
to test for zero prediction differences. Curves of iso-probability for a multi-normal PDF 
are given by constant r2 values for the following quadratic expression  
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where 
 

 exper_pred_ UsUsp −=  (5.19) 
 
For our case, we wish to test the hypothesis that the mean prediction difference for each 
measurement location (i.e., each UP) is zero. In this case, Eq. (5.18) becomes 
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Using our estimated covariance matrix for the validation exercise, Eqs. (5.16), and (5.17), 
and our prediction errors, we find 
 0.1302 =r  (5.21) 
 
This value represents a square of the distance, weighted by the inverse of the covariance 
matrix associated with the prediction differences.  
 
We can now perform a statistical test for the probability of this value of our measure of 
prediction difference, given a multi-normal distribution with zero mean and our 
covariance of p. The cumulative probability for some r2 in this PDF cloud is given by the 
χ2 distribution for multi-normally distributed prediction errors (Beck and Arnold, p. 294). 
For 120 degrees of freedom  
 
 )120(2

1
2

αχ −=r  (5.22) 
 
where 120 represents the number of measurements and 1-α represents the cumulative 
probability. The value for r2 for which the cumulative probability inside the 
corresponding constant PDF surface is 95% is 
 
 6.146)120(2

95.0
2 == χcriticalr  (5.23) 

 
Since r2=130.0 is smaller than 146.6, we cannot reject the hypothesis that the mean 
prediction difference is zero. Therefore, we have no statistical evidence that the model is 
not valid at the 95% confidence level and therefore, accept the model as valid by this 
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measure. Using r2=130.0 in Eq. (5.22) and evaluating the corresponding α gives α 
=0.252. This level of significance of r2=130.0 is thus 25.2%. If we were to repeat this 
entire validation exercise many independent times, we would expect a valid model to 
produce prediction differences that are this far or farther from zero 25.2% of the time.  
 
Note that these results contrast with the results presented in the previous chapter where 
we found that the model – CTH and the selected SESAME 3700 EOS table – provided 
predictions that were not consistent with the experimental results. Since the Mie- 
Grüneisen EOS model used in this section is calibrated using UP – US data directly, we 
would expect the present agreement with the data to be improved. We would expect the 
opposite conclusion if we were investigating the ultrahigh pressure data. This is further 
evidence of how application sensitive validation really is, a key point we emphasize. 
 
In the next section, we develop application specific metrics that have the effect of 
selectively weighting the measurements. 
 

5.12 Application-Based Metric 

5.12.1 The Application 
 
Given an application for our model, we can modify the above approach to better reflect 
the directions or data in the validation space that are most important to the application. 
One approach is to simply use only the validation data that covers the range of data 
important for the application. A second approach is to use the application itself to 
evaluate how the validation data should be weighted in defining a validation metric. We 
look at both approaches in the following sections. The application we chose for 
illustration is the two-dimensional impact of a small aluminum cylindrical slug against a 
larger diameter aluminum plate at 6 km/s presented in Section 3.4. 
 
 

5.12.2 Reduced Data Set 
 
How do we use information from the application to help define our metric in validation 
space? To begin with, we can simply use the subset of the test data that is appropriate for 
the application. For example, the geometry of our application is such that we expect the 
shock wave speed and corresponding particle speeds to decrease as the shock travels into 
the larger diameter aluminum plate (see Section 3.4 for the CTH predictions of particle 
velocity). This suggests that we need to use only the UP – US test data that correspond to 
particle speeds equal or slower than what we expect at the time of impact. Conservation 
of momentum requires that, for our example application, the initial particle speed at the 
time of impact be one-half the initial impact speed. This corresponds to 3000 m/s. To 
provide a bit of a margin for the application at hand, we will use data with particle speeds 
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in the range 0 to 3100 m/s. This corresponds to 89 of our 120 UP – US pairs. We now 
simply repeat the previous procedure using this subset of data.  
 
Our sensitivity matrix will contain only those rows of the original sensitivity matrix that 
correspond to the validation data in the 0 to 3100 km/s Up range. Its dimension will thus 
be 89x2. Using this revised sensitivity matrix, we generate the prediction covariance 
using Eq. (5.17). The covariance matrix for the prediction differences is given by Eq. 
(5.16). Eq. (5.20) is then used to evaluate the corresponding metric for this subset of data. 
Evaluating this metric for our 89 measurements gives  
 
 6.582 =r  (5.24) 
 
We can now perform a statistical test to evaluate whether this distance between the 
experimental measurements and the model predictions is large relative to the uncertainty. 
The cumulative probability for some r2 is given by the χ2 distribution for multi-normally 
distributed prediction errors (Beck and Arnold, p294). For 89 validation measurements  
 
 )89(2

1
2

αχ −=r  (5.25) 
 
where 1-α represents the cumulative probability. The value for r2 that contains 95% of the 
cumulative probability is 
 
 0.112)89(2

95.0
2 == χcriticalr  (5.26) 

 
Since r2=58.6 is smaller than 112.0, the difference between the model predictions and the 
experimental observations lies within the critical region. Therefore, we have no 
significant statistical evidence to reject the model as valid at the 95% confidence level 
using the data in the particle velocity range 0 to 3100 km/s. The level of significance of 
r2=58.6 is 99%. This is a very high significance suggesting that the model is very good in 
this data range. Inspection of Figure 5.9 shows that the model predictions tend to go 
through the center of the experimental measurements over this particle range. This is not 
the case for larger particle velocities and explains why we obtained such a high level of 
significance for this range of data, but not for the metric that uses all of the data. 
 

5.12.3 Application Defined Metric 
 
The validation metric in the previous section utilized the subset of data that was relevant 
to a particular application. The metric weighted this data by the inverse of the covariance 
matrix (i.e., uncertain data was weighted less, Eq. (5.20)). While we expect that the 
behavior of the model at particle velocities of 3 km/s (half the impact speed) is important 
very near the impact region, the behavior at these particle speeds will be less important as 
the shock wave propagates through the large plate of our application. The results of 
Section 3.4 show that the particle velocities throughout most of the plate are considerably 
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less than 3 km/s. This suggests that we should weight the particle velocities differently 
than simply by the inverse of the covariance matrix. How do we do this? 
 
We begin by looking at the relationship between the model parameters and the CTH 
model for the application decision variable as shown in Figure 5.12. We denote our 
application decision variable by m.  For our example, we take the time at which some 
point on the top surface of the large diameter disk (see Section 3.4) first reaches a particle 
velocity of 0.25 km/s to be our decision variable m. Due to symmetry, this point will be 
along the axis of the disk. There will be uncertainty in the model prediction of this 
decision variable due to the uncertainty in the model parameters. The uncertainty in the 
model parameters (α1 = CS ,  α2 = S1 )  is represented by the characterization part of Figure 
5.12.  The application prediction uncertainty due to the model parameter uncertainty is 
shown in the decision variable part of Figure 5.12. Note that the model maps the two-
dimensional uncertainty to a one-dimensional decision variable uncertainty for our 
example. 
 
As was the case for the validation measurement predictions, we use a sensitivity analysis 
to develop a mapping between the application decision variable m and the model 
parameters. For this case, f represents the time at which a point on the top surface (along 
the centerline) has a particle velocity of 0.25 km/s.  
 
As in the previous case, we take ∆α1 and ∆α2 to be 10% of the corresponding base values 
of CS and S1 as listed in Table 5.2. The evaluation of the sensitivity matrix by the finite 
difference approximation defined by Eqs. (5.12) and (5.13) will thus require 3 runs of 
CTH for the two-dimensional application. The resulting sensitivity matrix will possess 
only one row since our decision variable is one-dimensional (i.e., we are using only one 
decision variable). A sensitivity analysis of our application decision variable gives 
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where the time at which the top surface reaches 0.25 m/s is denoted by τ and 
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With knowledge of the sensitivity matrix a, we can evaluate which direction in the model 
parameter space has no effect on the decision variable. We denote this direction b and 
evaluate it as follows: 
 
 baT0 ==∆τ  (5.29) 
 
 
where b is a column vector. Note that Eq. (5.29) defines a direction in the parameter 
space that results in no change in the value for the decision variable, but it does not define 
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a magnitude. This direction is illustrated conceptually in the upper right part of Figure 
5.12. Since we normalize by the length of b later, the choice of magnitude of b is 
arbitrary. One choice of the magnitude gives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.12: Model Validation Sub-Space as Defined by an Application Decision 

Variable 
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We can now map this direction into validation space using the sensitivity matrix found 
previously. Since we are developing an application specific metric, we will use the 
application specific subset of data (i.e., the 89 data pairs) and the corresponding 
sensitivity matrix defined in Section 5.12.2. The direction in 89 dimensional validation 
space that corresponds to the b direction for the model parameters is given by  
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  bX=ββββ  (5.31) 
 
This direction is illustrated conceptually in the lower part of Figure 5.12. Since 
discrepancies between the model predictions and the experimental observations do not 
have an impact on the application decision variable along this direction (as defined by our 
CTH model for the application), we do not need to measure the prediction-measured 
differences along this direction. To remove the effect of this direction, we project the 
validation space into a hyperplane orthogonal to ββββ as follows: 
 
The projection matrix that projects points in the n-dimensional (n = 89) space into the n-1 
dimensional hyperplane is given by (Strang, 1976) 
 
 TT ββββββββββββββββ 1( −−= )IP  (5.32) 
 
where I is the identity matrix. Note that application of the above projection to ββββ itself  (or 
some multiple of ββββ) should result in zero: 
 

 
O

)
)IP

T

T

=−=
−=

−=
−

−

ββββββββ
ββββββββββββββββββββββββ

ββββββββββββββββββββββββ

)((
)((

1

1

T

T

 (5.33) 

 
We see that this subspace ignores the direction in the n-dimensional validation space that 
corresponded to no change in the application decision variable. We can now use the 
projection P to project quantities in our n dimensional validation space into the n-1 
subspace.  
 
 pred_pred_ P UsPUs =  (5.34) 
 
 
 exper_exper_ P UsPUs =  (5.35) 
 
 
where the P superscript denotes a projection into the subspace and the bold Us represents 
the vector of shock speed predictions and measurements. The expected value and 
covariance matrices for these quantities in the projected space are  
 
 )pred_(E)pred_(E P UsPUs =  (5.36) 
 
 TP )pred_(cov)pred_(cov PUsPUs =  (5.37) 
 
 )exper_(E)exper_(E P UsPUs =  (5.38) 
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 TP )exper_(cov)exper_(cov PUsPUs =  (5.39) 
 
We also have 
 
 )exper_(E)pred_(E)exper_pred_(E PPPP UsUsUsUs −=−  (5.40) 
 
 )exper_(cov)pred_(cov)exper_pred_(cov PPPP UsUsUsUs +=−  (5.41) 
 
We can now define our measure in the projected space. Since our projections are linear, 
multivariate normal distributions project to multivariate normal distributions. The 
projected distributions are marginal distributions in the sense that the n dimensional PDF 
is integrated along the direction ββββ to form the marginal distribution on the projection 
hyperplane.  
 
For a multi-normal PDF, curves of constant probability are given by constant values of r2 
where 
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and 
 

 PP exper_pred_ UsUsp −=  (5.43) 
 
For our case, we wish to test the hypothesis that the mean prediction errors for each 
measurement location (i.e., each UP) is zero. In this case, Eq. (5.42) becomes 
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The inverse of cov(p) does not exist in the n dimensional space because we have removed 
the uncertainty associated with the β direction. However, the inverse will exist in the 
projected subspace where we plan to use our metric. To evaluate the inverse in this 
subspace, we must remove the effect of the ββββ direction from the n-dimensional 
covariance matrix. A procedure to do this is to use the singular value decomposition of 
cov(p) as follows (see Golub and Van Loan, 1989, p70) 
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 TVUp ΣΣΣΣ=)cov(  (5.45) 
 
where ΣΣΣΣ is a nxn diagonal matrix of singular values: 
 
 )0,...,,,( 121 −= nσσσσσσσσσσσσΣΣΣΣ diag  (5.46) 
 
Since cov(p) is a projection into a n-1 subspace, one of the singular values must be zero.  
The pseudo-inverse of our covariance matrix is given by (Golub and Van Loan, 1989, 
p243): 
 
 TUVp ++ = ΣΣΣΣ)cov(  (5.47) 
 
where ΣΣΣΣ+ is a nxn diagonal matrix with its components given by 
 

 )0,1...,,1,1(
121 −

+ =
nσσσσσσσσσσσσ

ΣΣΣΣ diag  (5.48) 

 
Setting the last component to zero has the effect of ignoring the direction ββββ and our 
pseudo-inverse gives us the inverse for the n-1 dimensional subspace. Note that the 
evaluation of pseudo-inverses is a common feature of most linear algebra packages. Here 
we used Mathematica (Wolfram Research, Champaign IL). 
 
Writing our metric for the subspace in terms of the pseudo-inverse gives 
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We are now ready to perform our statistical inference in our application-defined 
subspace. Evaluating Eq. (5.49) for our 89 model predictions and experimental 
measurements gives 
 7.542 =r  (5.50) 
 
We can now perform a statistical test for the probability of this measure of the prediction 
difference. As before, the cumulative probability for some r2 in this multi-normal PDF 
cloud is given by the χ2 distribution (Beck and Arnold, p. 294). For 88 degrees of 
freedom of the subspace (i.e., n-1)  
 
 )88(2

1
2

αχ −=r  (5.51) 
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where 1-α represents the cumulative probability. The value for r2 which contains 95% of 
the cumulative probability is 
 
 9.110)88(2

95.0
2 == χcriticalr  (5.52) 

 
Since r2=54.7 is smaller than 110.9, we cannot reject the hypothesis that the mean 
prediction error is zero. Therefore, there is no statistical evidence to reject the model as 
valid at the 95% confidence level. The level of significance of r2=54.7 is greater than 
99.8%. For this particular 2-dimensional application, with this set of boundary conditions 
and mean parameter values, the model appears valid based on this application dependent 
metric.  
 

5.13 Summary 
 
In this chapter, we illustrated the use of a propagation of uncertainty analysis 
(specifically, sensitivity analysis) with a description for the uncertainty in the 
experimental observations, to perform several statistical tests for model validity for a 
shock wave physics application. Because the model predictions were sufficiently linear in 
the model parameters, and because the uncertainty in the model parameters were well 
represented by a correlated, multi-normal probability distribution, the resulting 
uncertainty in the model predictions were also well represented by a correlated, multi-
normal distribution. This eases the analytical effort in performing the statistical inference, 
but is not fundamental to our approach. 
 
Several validation metrics (measures of distance between the model prediction and 
experimental observations) were considered. First, we utilized the uncertainty in the 
model predictions due to model parameter uncertainty and the uncertainty in the 
experimental observations to develop a metric that is based on equal PDF curves using all 
of the experimental data. This approach corresponds to that presented in Hills and 
Trucano (1999) and weights those prediction errors based on their uncertainty. No 
consideration of the ultimate application of the metric is made.  
 
We then specialized the metric to be application specific. Initially, we defined a metric 
utilizing a subset of validation data that corresponds to the range of particle velocities 
important for the application considered.  
 
Finally, we used the same subset of data, but developed a procedure to weight the data 
according to how an application weights the data based on a sensitivity analysis. This 
measure is a form of an integrated measure metric in that the metric is defined in a 
subspace of the validation space.  
 
For the example presented, the model passed all of the validation tests. This suggests that 
CTH, when using the Mie-Grüneisen EOS model calibrated using the selected aluminum  
UP – US data, provides scientifically valid predictions of shock wave speed versus particle 
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speed, over the range of the validation data. Such was not the case for CTH when the 
SESAME 3700 EOS model was used. The reverse conclusion would be expected to be 
true for data corresponding to much higher shock velocities given the greater theoretical 
completeness of the EOS represented by the SESAME model. 
 
We will comment in our conclusions about the likely source of the particular problem of 
consistency with the data for this choice of model. However, we stress here that the 
purpose of our work in this report is focused on means of measuring such discrepancies 
and their interpretation in terms of statistical inference. The particular source of the 
validity problem for CTH plus the SESAME table for computing shocks in aluminum is 
not of great concern in this context. 
 
The probability level for the resulting measures was 99% or higher for the tests using a 
subset of data and the weighted subset of data, but 25% for the tests using all of the data. 
This suggests that better agreement between model predictions and the experimental 
results were obtained in the UP < 3100 m/s range. Close inspection of Figure 5.9 shows 
that there appears to be a little more bias in the predictions from the data in the UP > 3100 
m/s range. 
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6.0 Discussion and Recommendations 
 

6.1 Overview of Work Accomplished 
 
Our increasing reliance on computer models and our decreasing use of experimental 
testing has elevated our need for rigorous model validation methodology. Comparisons of 
model predictions to experimental observations through traditional “view graph metrics” 
are no longer acceptable for critical applications. More rigorous techniques must be used 
to establish whether observed differences between model predictions and experimental 
observations are due to the model itself, or due to uncertainty in the model parameters 
and experimental observations.  
 
Statistical concepts can be used to develop rigorous methodology to compare model 
predictions to experimental observations. This methodology is well established for simple 
models and can be, in concept, extended to the more complex models associated with 
engineering and scientific applications. One of the requirements in the application of 
statistical methodology is the development of the probability models for the uncertainty in 
the prediction differences (predicted measurements minus experimental measurements). 
These probability models allow statistically meaningful tests to be performed to evaluate 
the probability of an observed set of differences between predictions and observations.  
 
The traditional approach to develop this model for uncertainty is to use the set of 
differences directly. One typically assumes a distribution for the differences, evaluates the 
statistical parameters for this distribution, and then tests the hypothesized distribution 
against the data to evaluate where there is evidence that the distribution is not valid. If 
there is no evidence, then statistical inference can be used to evaluate whether the model 
predictions are consistent with the experimental observations. A characteristic of this 
approach is that the statistical properties (mean, variance) are generally assumed to be 
uniform over the data and the data is generally assumed to be independent. These 
assumptions will rarely be appropriate for the complex models considered here. However, 
one may be able to remove the trend in the differences so that the resulting residuals are 
well approximated by a standard distribution with uniform statistics. We provided an 
example of such an approach in Chapter 4 for a shock wave physics model.  
 
The alternative approach is to develop the statistical model for differences using the 
experimental data and using the model itself. It is generally easier to characterize the 
uncertainty in experimental data than to characterize the uncertainty in the differences 
since the experiment can generally be designed so that there is little correlation, or easily 
identifiable correlation between measurements. In contrast, the very act of subtracting 
experimental observations from model predictions can introduce a complex correlation 
structure in the resulting differences since the model predictions typically possess a 
complex correlation structure due to the nonlinear dependence of the model on uncertain 
model parameters. If the uncertainty in the model parameters can be characterized, then 
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this uncertainty can be propagated through the model to develop an uncertainty model, 
including correlation, for the model predictions.  This prediction uncertainty can then be 
added to the measurement uncertainty to establish an overall uncertainty for the validation 
experiment. The overall uncertainty can then be used to test the predictive model for 
validity, as inferred from a particular set of experimental data. A detailed example of this 
approach was provided in Chapter 5 for the shock wave physics model using a sensitivity 
analysis.  
 
We can further refine the above approach if we have a particular application in mind. For 
example, our application may require that the model be valid over a limited range of data. 
In this case, only the model validation data that represents application can be used to test 
the model. This approach can be further focused if we use a model for the application to 
estimate how the validation data should be weighted during the validation test. Even 
though the application may require that the model be valid over a range of data, the 
performance of the model for the application may depend very heavily on the 
performance in a subrange of the data. We developed and demonstrated an approach to 
define a weighted validation metric at the end of Chapter 5. This development was also 
based on a sensitivity analysis.  
 

6.2 Application to Nonlinear Problems 
 
The use of sensitivity analysis to evaluate the prediction probability distributions assumes 
that the predictions are locally linear in the model parameters. While this limitation may 
seem very restrictive at first glance, it is not as restrictive as one might think for model 
validation involving engineering applications. Many such model validation experiments 
are carefully controlled so that there is little uncertainty in the model parameters (such as 
those characterizing geometry, material properties, and in the boundary conditions). As a 
result, there will be little uncertainty in the model predictions for the validation 
experiment. The locally linear approximation for this application of sensitivity analysis 
must be valid only over the scale associated with the prediction uncertainty (say out to the 
95% confidence intervals) for the model validation experiments. If the scale of the 
corresponding prediction uncertainty is small compared to the scale of the non-linearity, 
then the use of sensitivity analysis will be appropriate.  
 
Even though the validation experiments are carefully controlled so that the sensitivity 
analysis approach is appropriate, such careful control may not be the possible for the final 
application of the model. For example, the material properties may be well defined for a 
validation experiment since they can be measured using samples from that manufacturing 
batch. In contrast, the uncertainty in the material properties for the application may not be 
as well defined since they may come from different batches and from different 
manufacturers. Boundary conditions are generally well controlled for validation 
experiments whereas they are not for the actual application. In these cases, the uncertainty 
in the model parameters for the application can be much larger than for the validation 
experiments. So while a sensitivity analysis may be appropriate for the development of a 
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validation metric, a nonlinear approach may be required for predicting uncertainty during 
the actual application of the model. 
 
There are also cases for which the sensitivity analysis approach may not be appropriate 
for validation experiments. For example, validation experiments in the geosciences can 
have very large uncertainties in model predictions due to the large uncertainties in the 
characterization of the geological media. In such cases, nonlinear approaches, such as 
Monte Carlo analysis, rather than sensitivity analysis, may be required to characterize the 
uncertainty of the model validation experiments. Engineering applications for which there 
is large uncertainty in model parameters for the validation experiments (such as joint to 
joint friction in a structure) may also require nonlinear approaches for model validation.  
 

6.3 Recommendations 
 
We feel that this report represents good progress toward developing rigorous 
methodology to compare model predictions to experimental observations. As such, we 
suggest that this methodology is ready to be applied to a broader class of applications 
than the one presented here. However, there are outstanding issues that should be 
addressed to increase the range of application. 
 
The application-defined metric developed in Chapter 5 uses a sensitivity analysis of the 
application to define the directions in the model parameter space that are not important 
for the application. This approach is appropriate for cases where the corresponding 
directions do not change significantly across the scales of uncertainty of these parameters 
for the validation experiments. However, there are applications for which a strong 
nonlinearity is exhibited for small changes in the model parameters, or for which the 
uncertainty in the model parameters for the validation experiments are large. Field scale 
validation experiments in the geotechnical fields, such as penetrator experiments, or 
experiments involving transport through geological media, are examples of applications 
with large uncertainties in the model parameters. The use of sensitivity analysis to define 
the validation metric is suspect for these cases. Computationally efficient, nonlinear 
methods should be developed which don’t require the evaluation of the full n-
dimensional probability density function for validation.  
 
A second area that should be addressed is to expand the present work to include non-
standard probability distributions. For the shock wave problems presented, there was 
good statistical evidence that the uncertainties associated with the model parameters, the 
model predictions, and the experimental observations were all well represented by multi-
normal probability distributions.  This greatly simplified the definition of the validation 
metrics as they are related to the well known χ2 distribution. For problems for which the 
model predictions are not distributed in a fashion that is well modeled by standard 
probability distributions, the computational effort required to resolve these probability 
distributions and to define metrics can be large, and in many cases, prohibitive. 
Techniques are needed to handle such distributions, preferably in application defined 
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subspaces, so as to reduce the computational requirements to resolve the validation 
metrics.  
 
A third area that should be addressed in the future is to further develop the relationship 
between the validation experiments and the anticipated application of the model. Just as 
the application can be used to help define a metric for the validation experiments, we 
should be able to extend this idea to multiple sets of validation experiments, each 
designed to test a subset of the physics. This relationship should tell us how to weight the 
results from the different sets of data and whether the different sets of data adequately test 
the model over the anticipated range of model parameters.  
 

6.4 Comment on the Discrepancy 
 
It has been our experience that this report is frustrating to a certain audience because of 
our rather glib approach to dealing with the discrepancy reported between the model, with 
the specification of the 3700 SESAME table, and the 2024 aluminum shock experimental 
data. Our stated focus in this report is on how to compare models and data and how to 
assess validity of the model from the resulting information. For this report we are, in fact, 
fairly uninterested in the specific cause of the lack of validity we observed for the model 
which used the 3700 SESAME table. We will now briefly comment on the likely cause. 
 
The fact that we have consistently distinguished the use of the specific SESAME table in 
the inconsistent data comparisons we report strongly suggests that we believe that the 
source of the problem is the particular material EOS chosen. It is well understood in 
computational shock wave physics that calculation accuracy is limited by the accuracy of 
the underlying material models, and the current work is no exception. A simple 
illustration supports this understanding in the present case. Figure 6.1 shows a 
comparison of a prediction of the Hugoniot for the 3700 table with the experimental data. 
The Hugoniot is constructed from the SESAME table using a tool that analyzes the table 
data directly.  
 
On the face of it the differences between prediction and experimental data in Figure 6.1 
are very close to those observed in Figure 3.8, which compared CTH results and the 
experimental data. In particular, the bias towards larger errors at higher impact velocities 
is clearly present in Figure 6.1.  Thus, the use of the 3700 SESAME table almost certainly 
is the main source of the invalidity of the model reported earlier in this report. 
 
However, in the spirit of the underlying goals and principles of this paper it is important 
to quantitatively confirm this hypothesis. In particular, a statistical analysis of the 
comparison of the SESAME table and the data similar to that of Section 4 should be 
undertaken. The results of such an analysis should remain invariant with respect to the 
results reported in Section 4 to make a scientifically precise statement that the chosen 
EOS model is indeed the main source of the invalidity. For example, if some results of 
the statistical analysis of Section 4 changed significantly when analyzing the differences 
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seen in Figure 6.1 then this is evidence that the model is introducing additional factors 
into the error structure that are not fully accounted for by the equation of state alone. Such 
an analysis is beyond the scope of the present paper.  
 
 
 
 

 
Figure 6.1 Comparison of 2024 aluminum shock data with predicted Hugoniot 

data from the 3700 SESAME table. 
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Appendix A: Multiple Runs of CTH and Post Processing 
 
 
The example problems presented required CTH to be run multiple times to generate 
shock speeds for multiple impact velocities. To facilitate this, we developed a simple 
scheme to automate this process: 
 
1. A file of the experimental UP – US pairs was first generated (cut and pasted) from the 

data. Two versions were generated, one containing all 232 data pairs for the analysis 
performed in Chapter 4, and one containing the randomly selected subset of 120 
validation data pairs for the analysis performed in Chapter 5. 

2. A simple program was written (called RANDOM) to read the data pair file from item 
1, and write out another file containing 232 (or 120) records corresponding to the 
initial material velocities (i.e., 2 UP) in the format required by CTH.  

3. A CTH preprocessor was written (called INPUT) to read a record from the initial 
material velocity file of item 2, and use this record to replace the corresponding 
record in the CTH input file. 

4. A CTH history postprocessor was written (HISTORY) to read a CTH history file, and 
write selected data (particle velocity as a function of time at the 4 cm  tracer point as 
defined in the CTH input file) to the end of a results file.  

5. A simple script was written to loop through calls of INPUT, CTHGEN, CTH, and 
HISTORY multiple times (i.e., 232 or 120). Upon execution of the script, the results 
file defined in item 4 contains time traces of particle speed at the tracer point for each 
of the 232 (or 120) CTH runs. 

6. A postprocessor was written (POSTPROC) to read the results file containing the 232 
(or 120) time traces of particle speed, and the corresponding experimental UP – US 
pairs from the file defined in item 1.  The traces were analyzed to evaluate the arrival 
time of the shock, and the corresponding predicted shock wave speed as discussed 
below. The particle speed, experimental shock speed, and the resulting predicted 
shock speed were then written to a file for each of the 232 (or 120) impact speeds. 
This file was used as the basis for all statistical processing. 

 
The evaluation of the shock speed using the tracer point particle speed history was fairly 
straight forward. We first evaluated the time of arrival of the shock at the tracer point 
initially located 4 cm from the impact surface in the initially stationary plate. The arrival 
time is taken to be that time at which the tracer particle speed reaches 0.5 UP.  To 
evaluate this time, the postprocessor simply searches along a history trace of time vs. 
tracer speed until a tracer speed greater than 0.5 UPis found. This defines a time interval 
(i.e., bounded by this time and the previous time in the history trace) containing the time 
at which the tracer speed reaches 0.5 UP. Linear interpolation was then used to estimate 
the time in this interval at which the tracer speed reaches 0.5 UP. The corresponding 
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shock speed was then estimated by dividing the distance traveled (4 cm) by the 
interpolated shock arrival time. 
 
The same linear interpolation process was used to determine the time at which the particle 
speed on the back surface of the large cylinder of the 2-dimensional example (as 
described in Section 3.4) reached 0.25 km/s. 
 
The derivatives for the sensitivity analysis for the 120 validation data pairs (Chapter 5) 
were estimated by running the above script three times; once for the base model 
parameters, and once each for the perturbations of the two EOS parameters. This resulted 
in three data files (see item 6), each giving the corresponding predicted shock wave 
speeds for each of the 120 particle speeds. Another program was used to read these three 
data files and estimate the corresponding sensitivity derivatives using finite differences.  
 
We comment that our method of determining shock velocity suffers from one weakness 
associated with steadiness of the wave. At the impact position the shock wave is not yet 
steady, and this will introduce a small error into this analysis. A simple discussion of this 
problem is given in (Bland, 1965). A method that would correct this error is to use two 
downstream points where the shock would be steady at both locations. We thank Marlin 
Kipp for reminding us of this difficulty. 
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Appendix B: CTH Input File Listing for the Validation 
Measurement Predictions 

 
 
Following is a listing of the base CTH input deck for the SESAME AL2024 EOS model. 
 
 
 
***********************************************************************
*
*eor* cgenin
*
***********************************************************************
*
* cthgen input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
*
***********************************************************************
*
* Title record
*
One-Dimensional Benchmark Problem - Aluminum impact at various km/s
*
***********************************************************************
*
* control records
*
control
endc
*
***********************************************************************
*
* edit records
*
*edit
* block 1
* expanded
* endb
*ende
*
***********************************************************************
*
* mesh records
*
mesh

block 1 geom=1dr type=e
x0 -12.

x1 n=300 dxf=0.1 w=30.
endx
xact = -12. 18.

endb
endm
*
***********************************************************************
*
* material insertion records
*
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insertion of material
*

block 1
*

package driver
material 1
numsub 1
velocities xvel 6.0e5
insert box

x1 -10. x2 0.
endi

endp
*

package impactor
material 1
numsub 1
insert box

x1 0. x2 10.
endi

endp
*

endb
*
endi
*
***********************************************************************
*
* eos records
*
eos

mat1 sesame=AL2024 EOS=3700
ende
*
***********************************************************************
*
endinput
*
* end of cthgen input
*
***********************************************************************
*
*eor* cthin
*
***********************************************************************
*
* cth input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
*
***********************************************************************
*
* Title record
*
One-Dimensional Benchmark Problem - Aluminum impact with mean of various
km/s
*
***********************************************************************
*
* control records
*
restart

nu = 1
endr
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*
control

tstop=9.0e-6
* nscycle = 50

rdumpf = 3600.
cpshift = 30.

endc
*
***********************************************************************
*
* time step records
*
mindt

time = 0. dt = 1.e-9
endn
*
maxdt

time = 0. dt = .01
endx
*
***********************************************************************
*
* tracer records
*
tracer

add 0.
add 4.

endt
*
***********************************************************************
*
* edit records
*
edit

exact
shortt

time = 0. dt = 1.0e-7
ends
longt

time = 0. dt = 10.
endl
plott

time = 0. dt = 10.
endp
histt

time = 0. dt = 1.0e-7
htracer1
htracer2

endh
ende
*
***********************************************************************
*
* boundary condition records
*
boundary

bhydro
block 1

bxb = 0 bxt = 0
endb

endh
endb
*
* end of cth input
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*
***********************************************************************
*
*eor* hisinp
*
***********************************************************************
*
* hisplt input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
*
***********************************************************************
*

plot time xvelocity.1
plot time xvelocity.2 nf
legendposition, LR

*
* end of hisplt input
*
**************************************************
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Appendix C: CTH Input File Listing for a Two Dimensional 
Application 

 
 
Following is a listing of the base CTH input deck for the two-dimensional application 
model discussed in Section 3.4. 
 
 
***********************************************************************
*
*eor* cgenin
*
***********************************************************************
*
* cthgen input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
*
***********************************************************************
*
* Title record
*
Two-Dimensional Benchmark Problem - Aluminum impact at 6 km/s
*
***********************************************************************
*
* control records
*
control
endc
*
***********************************************************************
*
* edit records
*
*edit
* block 1
* expanded
* endb
*ende
*
***********************************************************************
*
* mesh records
*
mesh

block 1 geom=2dc type=e
x0 0.0

x1 n=240 dxf=.025 w=6.0
endx

y0 -2.0
y1 n=400 dyf=.025 w=10.0
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endy

xact = 0.0 6.0
yact = -2.0 8.0

endb
endm
*
***********************************************************************
*
* material insertion records
*
insertion of material
*

block 1
*

package pellet
material 1
numsub 1

xvel=0.0
yvel=6.0e5

insert box
x1 0.0 x2 0.5
y1 -1.0 y2 0.0

endi
endp

*
package wall

material 2
numsub 1
insert box

x1 0.0 x2 5.0
y1 0.0 y2 5.0

endi
endp

*
endb

*
endi
*
***********************************************************************
*
* eos records
*
eos

mat1 mgrun user r0=2.785 cs=5.344e5 s1=1.305 s2=0.0 g0=2.0 cv=1.07e11
mat2 mgrun user r0=2.785 cs=5.344e5 s1=1.305 s2=0.0 g0=2.0 cv=1.07e11

ende
*
***********************************************************************
*
endinput
*
* end of cthgen input
*
***********************************************************************
*
*eor* cthin
*
***********************************************************************
*
* cth input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
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*
***********************************************************************
*
* Title record
*
Two-Dimensional Benchmark Problem - Aluminum impact with mean of various
km/s
*
***********************************************************************
*
* control records
*
restart

nu = 1
endr
*
control

tstop=8.0e-6
* nscycle = 50

rdumpf = 3600.
cpshift = 30.

endc
*
***********************************************************************
*
* time step records
*
mindt

time = 0. dt = 1.e-9
endn
*
maxdt

time = 0. dt = .01
endx
*
***********************************************************************
*
* tracer records
*
tracer

add 0. 0.
add 0. 5.

endt
*
***********************************************************************

*
* edit records
*
edit

exact
shortt

time = 0. dt = 1.0e-6
ends
longt

time = 0. dt = 10.
endl
plott

time = 0. dt = 1.0e-6
endp
histt

time = 0. dt = 1.0e-7
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htracer1
htracer2

endh
ende
*
***********************************************************************
*
* boundary condition records
*
boundary

bhydro
block 1

bxb = 0 bxt = 0
byb = 0 byt = 0

endb
endh

endb
*
endinput * end of cth input

*eor* pltinp

nlegend off
color materials 1 120
color void 0 if=7
materials 'slug' 'plate'
limits,x=0.0,0.06,y=-0.01,0.06
flegend bands
rbands,b1=1,b2=4000,c1=95,c2=8
mirror
left materials if
right bands if

Title, Two-Dimensional Impact, Velocity

2dplot,if,bands=xyvelocity=5.0,materials,mirror

***********************************************************************
*
*eor* hisinp
*
***********************************************************************
*
* hisplt input for aluminum impact
*
* >>>>>>>>>>>>>>>>>>>>>>>>>>>***********************
* aluminum at various km/s stationary aluminum
*
***********************************************************************
*

plot time yvelocity.1
plot time yvelocity.2 nf
legendposition, UR



    

 103

*
* end of hisplt input
*
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Appendix D: Data 
 
 
The following tables provide the model predictions and the sampled data used for the 
CTH analysis presented in Chapters 4 and 5.  
 
Table D1: Predicted Shock Speed vs. Experimental Measurements (m/s): 232 

data sets, see Figure 3.8. 
 

Up Us_exp Us_pred Up Us_exp Us_pred Up Us_exp Us_pred 
278 5811 5604.6 818 6366 6376.8 1134 6826 6819.7 
279 5782 5606.1 831 6436 6396.9 1136 6831 6823.7 
440 6021 5839.4 833 6483 6399.8 1141 6795 6831.0 
472 6054 5885.4 839 6419 6407.4 1144 6783 6835.4 
497 6025 5920.4 850 6415 6422.1 1146 6861 6838.3 
502 6098 5930.2 854 6443 6428.1 1157 6893 6853.7 
503 5996 5931.7 858 6488 6434.0 1157 6752 6853.7 
507 6055 5937.4 859 6445 6435.5 1159 6915 6856.7 
509 5947 5938.6 859 6470 6435.5 1206 6857 6919.4 
509 5953 5938.6 860 6446 6436.9 1220 6981 6941.8 
608 6125 6079.5 862 6472 6439.1 1220 7014 6941.8 
609 6103 6080.9 863 6486 6440.5 1260 6955 6995.3 
626 6262 6106.8 864 6418 6441.9 1263 6938 6999.3 
627 6228 6107.0 865 6518 6443.3 1277 6943 7018.5 
650 6226 6139.7 871 6561 6450.2 1318 7062 7077.6 
671 6164 6169.1 873 6522 6453.0 1352 7092 7123.3 
677 6277 6176.4 888 6541 6476.9 1362 7143 7138.8 
722 6367 6241.4 891 6589 6481.0 1362 7139 7138.8 
727 6323 6248.8 892 6442 6482.3 1383 7225 7166.5 
728 6310 6250.2 896 6589 6487.7 1426 7268 7226.6 
768 6348 6308.0 897 6579 6489.0 1432 7228 7235.2 
778 6388 6320.9 901 6402 6494.2 1437 7156 7242.3 
786 6312 6332.2 910 6530 6507.0 1445 7268 7252.0 
790 6304 6337.5 910 6534 6507.0 1446 7211 7253.4 
792 6365 6340.3 953 6616 6567.9 1461 7269 7273.9 
792 6314 6340.3 953 6617 6567.9 1465 7295 7279.4 
793 6308 6341.7 966 6659 6584.2 1467 7305 7278.2 
798 6342 6347.4 975 6607 6599.1 1479 7266 7301.8 
798 6418 6347.4 979 6560 6604.8 1481 7268 7304.6 
799 6353 6348.9 988 6507 6617.6 1498 7342 7327.9 
800 6393 6350.3 990 6490 6620.4 1539 7366 7382.0 
800 6459 6350.3 1081 6824 6747.2 1557 7462 7409.3 
802 6397 6353.3 1107 6779 6781.5 1558 7444 7410.5 
802 6355 6353.3 1110 6844 6785.9 1568 7413 7423.1 
802 6393 6353.3 1116 6843 6796.3 1574 7479 7430.9 
803 6432 6354.8 1119 6846 6800.3 1574 7426 7430.9 
803 6432 6354.8 1121 6840 6802.9 1578 7326 7433.5 
805 6394 6357.8 1124 6818 6806.8 1588 7416 7451.8 
809 6422 6365.6 1128 6756 6811.9 1605 7407 7475.8 
809 6422 6365.6 1130 6823 6814.5 1617 7508 7489.9 
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Table D1: Continued 
 

Up Us_exp Us_pred Up Us_exp Us_pred Up Us_exp Us_pred 
1722 7678 7636.2 2664 8724 8914.8 3387 9609 9884.5 
1728 7596 7640.2 2671 8764 8931.7 3395 9821 9895.6 
1728 7612 7640.2 2687 8853 8953.9 3400 9916 9902.5 
1728 7615 7640.2 2709 8792 8978.6 3406 9872 9910.8 
1742 7690 7662.0 2710 8816 8980.0 3419 9866 9933.8 
1744 7616 7664.7 2735 8909 9011.1 3463 9654 9994.2 
1770 7659 7703.5 2738 8916 9015.1 3472 9697 10005.0 
1779 7758 7715.0 2817 9144 9130.9 3481 9727 10026.1 
1812 7775 7761.7 2878 8971 9204.2 3487 9732 10034.4 
1851 7690 7807.8 2911 9070 9248.7 3500 9870 10052.3 
1858 7850 7817.6 2935 9231 9275.4 3508 9861 10062.8 
1939 7773 7934.2 2974 9236 9336.0 3508 9880 10062.8 
1948 7973 7941.5 2987 9401 9356.7 3538 9880 10098.2 
1957 8054 7954.4 3030 9177 9411.3 3563 10117 10124.9 
1959 8015 7957.3 3031 9180 9412.7 3618 10040 10204.9 
2095 8114 8148.3 3035 9198 9418.4 3629 10238 10215.7 
2096 8076 8149.6 3081 9317 9471.9 3658 9876 10266.7 
2130 8127 8197.8 3086 9317 9478.6 3680 10113 10294.2 
2154 8149 8226.2 3108 9228 9517.1 3717 10190 10342.9 
2154 8150 8226.2 3148 9446 9577.3 3718 10388 10344.3 
2156 8332 8229.1 3148 9369 9577.3 3736 10138 10360.0 
2206 8231 8297.7 3181 9596 9617.8 3745 10162 10372.7 
2306 8396 8431.8 3187 9549 9626.3 3748 10370 10376.9 
2327 8358 8458.0 3217 9365 9662.8 3772 10458 10402.8 
2335 8421 8468.9 3225 9666 9673.6 3777 10409 10409.5 
2371 8436 8520.6 3238 9762 9683.7 3778 10431 10410.8 
2446 8570 8619.9 3251 9409 9708.8 3786 10341 10421.7 
2449 8529 8624.0 3260 9477 9720.3 3930 10552 10624.8 
2467 8699 8649.2 3269 9426 9726.9 3966 10513 10669.3 
2477 8618 8663.5 3274 9617 9733.3 3967 10384 10670.8 
2595 8829 8823.9 3287 9642 9763.6 3983 10611 10694.5 
2604 8762 8834.9 3293 9758 9770.8 3988 10572 10699.7 
2604 8748 8834.9 3297 9721 9775.7 3991 10542 10703.9 
2605 8744 8836.2 3347 9775 9842.5 4001 10572 10718.0 
2608 8664 8840.1 3361 9751 9854.6 4026 10631 10759.0 
2641 8848 8889.7 3376 9803 9876.8 4041 10572 10778.9 
2645 8797 8894.5 3376 9746 9876.8    
2650 8803 8900.6 3381 9670 9883.8    
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Table D2: Predicted Shock Speed vs. Experiment (m/s) - Validation Data: 120 

data sets, see Figure 5.7. 
 

Up Us_exp Us_pred Up Us_exp Us_pred Up Us_exp Us_pred 
278 5811 5604.6 1121 6840 6802.9 2738 8916 9015.1 
440 6021 5839.4 1128 6756 6811.9 2817 9144 9130.9 
472 6054 5885.4 1130 6823 6814.5 2911 9070 9248.7 
503 5996 5931.7 1134 6826 6819.7 2935 9231 9275.4 
507 6055 5937.4 1136 6831 6823.7 2974 9236 9336.0 
609 6103 6080.9 1141 6795 6831.0 2987 9401 9356.7 
626 6262 6106.8 1159 6915 6856.7 3030 9177 9411.3 
627 6228 6107.0 1220 6981 6941.8 3031 9180 9412.7 
671 6164 6169.1 1220 7014 6941.8 3086 9317 9478.6 
722 6367 6241.4 1277 6943 7018.5 3181 9596 9617.8 
727 6323 6248.8 1352 7092 7123.3 3187 9549 9626.3 
728 6310 6250.2 1383 7225 7166.5 3217 9365 9662.8 
778 6388 6320.9 1437 7156 7242.3 3225 9666 9673.6 
786 6312 6332.2 1446 7211 7253.4 3238 9762 9683.7 
792 6314 6340.3 1467 7305 7278.2 3260 9477 9720.3 
792 6365 6340.3 1498 7342 7327.9 3274 9617 9733.3 
799 6353 6348.9 1557 7462 7409.3 3347 9775 9842.5 
800 6393 6350.3 1574 7426 7430.9 3361 9751 9854.6 
800 6459 6350.3 1578 7326 7433.5 3376 9803 9876.8 
802 6397 6353.3 1605 7407 7475.8 3381 9670 9883.8 
802 6355 6353.3 1742 7690 7662.0 3387 9609 9884.5 
809 6422 6365.6 1744 7616 7664.7 3400 9916 9902.5 
818 6366 6376.8 1779 7758 7715.0 3419 9866 9933.8 
831 6436 6396.9 1858 7850 7817.6 3463 9654 9994.2 
859 6470 6435.5 1939 7773 7934.2 3472 9697 10005.0 
863 6486 6440.5 1948 7973 7941.5 3481 9727 10026.1 
871 6561 6450.2 1959 8015 7957.3 3508 9861 10062.8 
888 6541 6476.9 2154 8150 8226.2 3508 9880 10062.8 
891 6589 6481.0 2156 8332 8229.1 3563 10117 10124.9 
896 6589 6487.7 2335 8421 8468.9 3629 10238 10215.7 
897 6579 6489.0 2371 8436 8520.6 3658 9876 10266.7 
901 6402 6494.2 2467 8699 8649.2 3736 10138 10360.0 
953 6616 6567.9 2477 8618 8663.5 3745 10162 10372.7 
953 6617 6567.9 2595 8829 8823.9 3772 10458 10402.8 
966 6659 6584.2 2605 8744 8836.2 3786 10341 10421.7 
975 6607 6599.1 2608 8664 8840.1 3930 10552 10624.8 
988 6507 6617.6 2641 8848 8889.7 3967 10384 10670.8 

1110 6844 6785.9 2645 8797 8894.5 3988 10572 10699.7 
1116 6843 6796.3 2709 8792 8978.6 4001 10572 10718.0 
1119 6846 6800.3 2735 8909 9011.1 4041 10572 10778.9 
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Table D3: Experimental Shock vs. Particle Speed (m/s) – Calibration Data: 112 
data pairs, see Figure 5.8. 

 
Up Us_exp Up Us_exp Up Us_exp 

279 5782 1146 6861 2449 8529 
497 6025 1157 6893 2604 8762 
502 6098 1157 6752 2604 8748 
509 5947 1206 6857 2650 8803 
509 5953 1260 6955 2664 8724 
608 6125 1263 6938 2671 8764 
650 6226 1318 7062 2687 8853 
677 6277 1362 7143 2710 8816 
768 6348 1362 7139 2878 8971 
790 6304 1426 7268 3035 9198 
793 6308 1432 7228 3081 9317 
798 6418 1445 7268 3108 9228 
798 6342 1461 7269 3148 9446 
802 6393 1465 7295 3148 9369 
803 6432 1479 7266 3251 9409 
803 6432 1481 7268 3269 9426 
805 6394 1539 7366 3287 9642 
809 6422 1558 7444 3293 9758 
833 6483 1568 7413 3297 9721 
839 6419 1574 7479 3376 9746 
850 6415 1588 7416 3395 9821 
854 6443 1617 7508 3406 9872 
858 6488 1722 7678 3487 9732 
859 6445 1728 7596 3500 9870 
860 6446 1728 7612 3538 9880 
862 6472 1728 7615 3618 10040 
864 6418 1770 7659 3680 10113 
865 6518 1812 7775 3717 10190 
873 6522 1851 7690 3718 10388 
892 6442 1957 8054 3748 10370 
910 6530 2095 8114 3777 10409 
910 6534 2096 8076 3778 10431 
979 6560 2130 8127 3966 10513 
990 6490 2154 8149 3983 10611 

1081 6824 2206 8231 3991 10542 
1107 6779 2306 8396 4026 10631 
1124 6818 2327 8358   
1144 6783 2446 8570   
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